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1    Introduction 

Planning and scheduling tasks are inherently complex. In computational terms, they 
are intractable, i.e.. NP-hard or worse. As a practical consequence, realistic size plan- 
ning and scheduling problems cannot be solved optimally in a "reasonable" amount of 
time. Nonetheless, solutions have to be found for real-world problems, and therefore 
heuristic approaches have to be adopted, ideally with some guarantee on the quality 
of the solution. 

This paper focus on the real-world problem of multiple resource-constrained project 
management. This problem is very common in manufacturing and it is a generaliza- 
tion of the weil-known job-shop scheduling problem (Blazewicz et al 83, Vaessens et al 94). 
As a particular instance of this problem, we consider the management of outages of 
nuclear power plants. An outage is a planned shutdown for refueling, repair, and 
maintenance. It is a rather daunting real-world task that may involve from 10,000 
up to 45,000 activities. In the domain of nuclear power plants, risk and safety man- 
agement are sine qua non conditions and therefore a planning and scheduling system 
(automatic or manual) has to enforce safety constraints guaranteeing that the state 
of the plant is safe at any time during an outage. The current automatic technology 
for outage scheduling used by the utilities does not take into consideration safety 
requirements — currently, safety and risk management still heavily rely on the expe- 
rience of the manual schedulers, rather than on automatic procedures. Furthermore, 
in this domain- the existence of good automatic solutions is not only crucial for nu- 
clear safety reasons but also for economic reasons — the cost per day of shutdown is 
in the order of 31,000,000. 

We report on a successful project for transference of advanced AI technology into 
the domain of planning of outages of nuclear power plants, a collaboration between 
Rome Laboratory, the Electric Power Research Institute, Kaman Science, and Kestrel 
Institute as part of DOD's dual-use program. The software environment selected for 
this project was KIDS (Kestrel Interactive Development System)(Smith 91], which 
is a set of semiautomatic tools to transform declarative problem specifications into 
correct and efficient programs. The main goal of the project was to evaluate the use 
of transformational approaches and AI technology to solve real-world planning and 
scheduling problems involving complex constraints. 

ROMAN (Rome Lab Outage Manager) is the prototype system that was developed as 
a result of this project [Gomes & Smith 96]. ROMAN'S main innovation compared to 
the current state of the art of outage management tools is its capability to automat- 
ically enforce safety constraints during the planning and scheduling phase. Another 
innovative aspect of ROMAN is its generation of more robust schedules that are fea- 
sible over time windows. In other words, ROMAN generates a family of schedules 
by assigning time intervals as start times to activities rather than single point start 
times, without afecting the overall duration of the project. 



Roman uses a rich representation for the state of the plant at any time (as in plan- 
ning approaches) which allows for efficient constraint-based reasoning, in particular, 
temporal reasoning (as in scheduling). The problem is modeled as a constraint sat- 
isfaction problem combining a global search tactic with constraint propagation. The 
derivation of very specialized representations for the constraints to perform efficient 
propagation is a key aspect for the generation of very fast schedules — constraints 
are compiled into the code, which is a novel aspect of our work using an automatic 
programming system, KIDS. In order to increase schedule robustness our approach 
entails the generation of families of schedules with the same completion time and that 
are feasible over time intervals. 

In the next section we describe related work. In section 3 we define the outage 
problem and in section 4 we discuss the current state-of-the-art of outage management 
for nuclear power plants and its limitations. Section 5 describes ROMAN in detail. 
Section 7 summarizes the main results achieved with ROMAN. 

2    Related Work 

Our approach to scheduling uses global search methods as opposed to local search 
[Gomes & Smith 96]. Local search techniques are based on the idea of improving ex- 
isting solutions by iteratively making small changes. A local search algorithm defines a 
walk in which each solution is a neighbor of a previous visited solution. Examples of lo- 
cal search approaches are repair methods (e.g., [Zweben et al 94, Selman & Kautz 93, 
Minton et al 90]), fix-point iteration[Cai & Paige 89], and linear programming algo- 
rithms. Global search methods on the other hand focus on incrementally generat- 
ing a solution by repeatedly splitting an initial set of solutions into subsets until a 
feasible or optimal solution can be extracted. Examples of global search methods 
include backtrack, heuristic search, branch-and-bound. Examples of approaches to 
scheduling taking a global search perspective are OPIS/DITOPS [Smith 94] Micro- 
Boss [Sadeh 94]. 

The main innovation of our approach compared to other AI scheduling approaches is 
the derivation of very specialized constraints that are compiled into the search and 
control mechanisms [Gomes & Smith 96]. Other approaches to scheduling use con- 
straint representations and operations that are geared for a broad class of problems, 
while our approach, a transformational approach, derives specialized representations 
for constraints allowing fast constraint checking and constraint propagation. 

Another novel aspect of our approach is the generation of schedules that are feasible 
over time windows rather than having single time points as start times. With our 
approach, we generate an infinite family of schedules that have the same completion 
time. Existing AI approaches to scheduling with complex state variables only generate 
a single solution, feasible for single start times, without any guarantees of feasibility 
over time windows [Gomes & Smith 96]. 



The framework selected for this project was KIDS (Kestrel Interactive Development 
System) [Smith 91], which supports users in transforming declarative problem specifi- 
cations into correct and efficient programs. The transformations provided in KIDS are 
designed to perform significant and meaningful actions in terms of search efficiency. 
The various transformations in KIDS include: algorithmic transformations, program 
optimization techniques and data structures refinement. The algorithmic transfor- 
mations allow the user to add search and control mechanisms to a given problem 
specification. Finite differencing is another important transformation provided by 
KIDS. KIDS uses a form of deductive inference called directed inference to reason 
about the problem specification in order to automatically apply tactics, derive filters 
and perform constraint propagation [Smith et al 95]. 

KIDS has been used to derive a very fast transportation scheduler for the US Trans- 
portation Command, KTS (Kestrel Transportation Scheduler) [Smith k Parra 93]. A 
typical transportation problem with 10,000 movement requirements takes the derived 
scheduler 1 to 3 minutes to solve, compared with 2.5 hours for a deployed feasibility 
estimator (JFAST) and 36 hours for deployed schedulers (FLOGEN, ADANS). The 
computed schedules use relatively few resources and satisfy all specified constraints. 
The speed of this scheduler was due to the synthesis of strong constraint checking 
and constraint propagation code [Smith et al 95]. In this paper we show how this ap- 
proach can be extended to tackle a much richer real-world scheduling task involving 
complex state variables and time windows. 

3    Planning and Scheduling of Nuclear Power Plant 
Outages 

The planning and scheduling of the operations involved in the outages of nuclear power 
plants has a great impact in terms of the outage costs (replacement power, labor cost, 
etc.), use of scarce resources and implementation of safety procedures. Prior to 1979, 
before the accident at Three Mile Island (TMI), refueling was the driving factor of 
outages of nuclear power plants: maintenance plans were governed by the projected 
duration of refueling activities. After the TMI accident, the focus turned to improving 
nuclear power plant effectiveness. The duration of an outage was determined not only 
by refueling activities, but by the work and plant modifications required to make 
the plant safer and more effective [PSDI 94, Wallace 90], Throughout the 1980s, 
backfits and the aging of nuclear power plants has reversed outage scope priorities 
and methodologies. Often the refueling activities no longer dictate the critical path 
in an outage. 



3.1    Definition of Problem 

The problem of planning and scheduling nuclear power plant outages can be stated 

as follows: 

Given a set of outage activities (refueling operations, repairs, modifica- 
tions, and maintenance activities), a set of resources, and a set of techno- 
logical constraints, assign times and resources to the activities in such way 
that the completion of the outage is minimized while safely performing all 

the activities required by the outage. 

3.1.1 Activities 

Depending on the planning and scheduling procedures of each particular plant, as well 
as the scope of the activities performed during the outage, the planning and scheduling 
of outages for nuclear power plants might involve from 15,000 up to 45,000 activities. 
During an outage several activities are performed, such as: 

• Refueling operations 

• Plant betterment 

• Preventive maintenance 

• Corrective maintenance 

• Technical specification requirements for inspections or surveillance. 

Relationships between activities that are explicitly defined in work order activities 
are temporal relationships (e.g., activity A precedes (follows) activity B). Other 
constraints between activities arise as a result of different requirements in terms of 
feasible plans and schedules. Requirements regarding feasible plans and schedules are 
outlined in the next paragraphs. 

3.1.2 Plant Configuration and Risk Management 

The general principle underlying the outage procedures is that outages should be as 
short as possible, maintaining the appropriate level of nuclear safety. In other words, 
the outage should be planned and managed to reduce shutdown risks through the 
appropriate consideration of defense in depth and preventive measures. The concept 
of defense in depth, used for the purpose of managing risk during shutdown consists 

of: 



• providing systems, structures and components to ensure backup of key safety 
functions using redundant, alternate or diverse methods; 

• planning and scheduling outage activities in a manner that optimizes safety 

system availability 

Main safety functions and systems components that are monitored to implement the 
concept of defense in depth are: 

• electricity power control system 

• primary and secondary containment 

• fuel pool cooling system 

• inventory control 

• reactivity control 

• shutdown cooling 

• vital support systems 

Figure 1 depicts the decision tree regarding safety levels for a simple safety function, 
electricity power control. 

3.1.3    Resources 

The main type of resource taken into consideration when planning and scheduling 
nuclear power plant outages is labor, organized into different skill groups. Other 
resources that are considered include: 

• reactor building crane 

• laydown areas 

• water purification and storage systems 

• radioactive waste system 

• specialized equipment 

ROAMN does not include resource assignment. 
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Figure 1: Safety Function - Electricity Power Control 

4    Outage Planning and Scheduling in the Real 
World 

There are approximately 110 nuclear plants operating in the US. Our knowledge about 
the way outage planning and scheduling is performed in real world environment only 
considers the power plant« that axe members of EPRI, the Electric Power Research 
Institute. Nevertheless, we consider our sample representative since most of the op- 
erating nuclear power plants are members of EPRI, with some notable exceptions like 
Florida Power and Pacific Gas k. Electric. 



4.1    Time Window Assignment 

The current automatic planning and scheduling techniques used by the utilities are 
very simple - planning and scheduling still heavily relies on the experience of the 
manual schedulers rather than on automatic procedures. In the late 1970s, utilities 
began to use the project management techniques to control nuclear refueling outages. 
Current automatic approaches to outage scheduling mainly consist of the applica- 
tion of automatic project management techniques, such as PERT and CPM tech- 
niques. The software currently used by the utilities to perform their outage planning 
and scheduling tasks are mainly: Primavera Project Planner for Windows (personal 
computers), Project/2 (mainframes), Project2/X for Windows (personal computers), 
Prestige (mainframes) and OpenPlan (personal computers). 

Some sites use activity based scheduling only. Activities (work orders) and temporal 
relationships between activities are coded into the software1 and a PERT/CPM 
network is generated. The PERT/CPM network can then be manually perturbed to 
meet resource requirements, safety requirements, and other requirements. 

When system windows are used for scheduling, milestones and key events are set up 
based on experience and the status of key components between the milestones deter- 
mines the position of the system windows. The activities (work orders) are manually 
assigned to the system windows where they are allowed to be performed within the 
scope of the predecessor-successor relationships. PERT/CPM network is generated 
considering the activities, the pre-defined system windows and the milestones. The 
PERT/CPM network can then be manually perturbed to meet resource requirements, 
safety requirements and other requirements. 

4.2     Plant Configuration and Risk Management 

Safety and risk assessment have been by far manual processes which call on the 
expertise of the personnel involved to make decisions based on published policies 
and procedures. In order to ensure that the sequence of activities performed during 
an outage follows the safety requirements, the schedule produced using PERT/CPM 
software tools is evaluated using a risk assessment methodology. If the schedule does 
not meet the safety requirements, manual adjustments have to be performed. ORAM 
(Outage Risk Assessment Methodology) h one. of the most popular software tools 
used to perform r,he risls assessment of schedules. It simulates the execution of the 
schedule keeping track of the configuration of the plant at any time and therefore 
evaluating the risk inherent to a schedule at any time during its execution. 

actually, the only type of temporal relationship handled by the current software is the relation- 
ship before/after with the possibility of definition of slacks. 



4.3    Resources 

During automatic generation of schedules resources are assumed to be unlimited. 
Manual adjustments are performed a posteriori in order to meet the resource require- 
ments. 

5    ROMAN - Rome Lab. Outage Manager 

ROMAN'S approach combines a constraint satisfaction paradigm with global search 
and constraint propagation [Gomes & Smith 96]. ROMAN includes all the technolog- 
ical constraints currently incorporated in the automatic tools used by the utilities for 
schedule generation. In addition, it includes all the constraints regarding the safety 
function AC power. Other safety functions could be modeled in a similar way. A 
top level formal specification of the outage problem including the safety function AC 
power follows:2 

function : safe-outage-windows (activities) 
returns(schedule | 

Consistent-Activity-Separation(schedule) A 
Consistent-AC-power(schedule) A 
All-activities-scheduled (activities, schedule)) 

In this formulation activities correspond to the set of activities to be performed. 
Each activity has a given duration, a set of predecessors, and a set of effects on 
resources. The schedule is a partial order of activities. Activities in the schedule 
have time windows assigned to it. A time window defines the earliest start time 
(est) and latest start time (1st) of an activity, such that the activity can start at 
any time during the window without increasing the overall duration of the project. 
Given the duration of the activity, the earliest finish time (eft) and latest finish 
time (Ift) can be calculated. The predicate Consistent-Activity-Separation(schedule) 
states that all the activities in the schedule satisfy the precedence constraints. The 
predicate Consistent-ac-power(schedule) states that the schedule verifies the safety 
constraints, from an AC power point of view. As a completeness condition, the predi- 
cate All-activities-scheduled (activities, schedule) states that all the activities have to 
be scheduled. 

The notion of state of the plant is a key concept in enforcing safety constraints. In 
outage management the state of the plant is measured in colors — green, yellow, 
orange or red, in this order of increasing risk — and is computed by considering 

2We modeled the AC power safety function as a proof of concept. Other safety functions could 
be modeled in a similar way. 



complex decision trees regarding safety levels as illustrated in Figure 2. For instance, 
if there is an activity being executed that has the potential to cause AC power loss, 
then in order for the plant to be in a yellow state it is required to have two off-site 
AC power sources available and three operable emergency safeguard buses. 
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Figure 2: Example of a decision tree for the safety function AC Power 

Since the start times of activities are defined over time windows, we introduce two 
concepts regarding the execution of an activity: the definite period and the potential 
period of an activity.. The definite period of an activity corresponds to the period of 
time during which the activity is definitely being execute — it is the interval of time 
between the latest start time of the activity (1st) and its earliest finish time (eft). 
The potential period of an activity corresponds to the period of time during which 
the activity may be executed — it is the time period between the earliest start time 
of the activity (est) and its latest finish time (Ift). Figure 3 illustrates the notion of 
definite period of an activity. Notice that activity A does not have a definite period, 
since its earliest finish time is before its latest start time. 



< < > > A 
est eft 1st ift 

< >— <    > B <   >--  < > c 
est 1st eft ift est   1st eft 1ft 

< >- < >D <>__. <> E 

est 1st ( 5ft    1ft est 1st eft 1ft 

_ —- definite period 

Figure 3: Notion of a definite period. 

In addition, we define two other concepts: definite state of the plant and potential 
state of the plant. The definite state of the plant is associated with the concept of 
definite period: it represents the state of the plant for a given safety function (e.g., 
AC power) assuming that activities are only executed during their definite period. 
The concept of potential state of the plant is associated with the concept of potential 
period of an activity: it represents the state of the plant for a given safety function 
assuming that activities are executed during the whole extension of their potential 
periods. The potential state of the plant is always "equal" or "greater" than the 
state of the plant since the definite period of an activity tends to underestimate the 
duration of activities while the potential period of an activity tends to overestimate 
the duration of activities. Figure 4 gives an example. Note that during certain time 
intervals, the definite and potential states of the plant coincide. 

5.1     Search and Control Mechanisms 

KIDS provides algorithmic transformations that add control and search mechanisms 
to a given specification. The search tactic selected for the outage problem was global 
search (see next section). Figure 5 summarizes the approach adopted in ROMAN 

[Gomes & Smith 96]. 

Initially global search is applied to the formal specification of the outage problem 
in order to generate a schedule, assuming the definite period of activities. Since the 
notion of definite period tends to underestimate the duration of the activities, it is very 
likely for the schedule produced in this initial phase not to be feasible from the point 
of view of the potential state of the plant. In order to enforce the safety threshold 
for the potential state of the plant at any time during the outage, "refinement" of 
the time windows of the initial schedule takes place. In the next section, we describe 
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Figure 4: Definite and potential states of the plant. 

global search theory. 

5.1.1    Global Search Theory 

Global search [Smith 87, Smith et al 95] is a backtrack algorithm, a refinement of 
generate-and-test. The tactic is implemented by finding a space containing all the 
solutions to the problem that can be divided into nested subspaces. The global 
search algorithm starts with an initial set that contains all the solutions to the given 
problem instance, repeatedly extracts solutions, splits sets, and eliminates subsets 
using propagation, until no sets remain to be split. The process can be described as a 
tree search in which a node represents a set of candidates, and an arc represents the 
split relationship between a set and a subset. The principal operations are to extract 
candidate solutions from a set and to split a set into subsets. The derivation of 
efficient cutting constraints that eliminate subspaces that do not contain any feasible 
solution is an important complementary operation in the derivation of the global 
search tactic. 

Figure 6 illustrates the global search theory for the initial scheduling of the activities 
considering their definite periods. In this global search theory the initial subspace 
descriptor (partial schedule) is the empty sequence (empty schedule). Splitting cor- 
responds to appending an unscheduled activity, with a given time window, to the 
partial schedule. Cutting corresponds to propagating the constraints over the time 
windows of the activities in the partial schedule. Notice that cutting makes the time 
windows shrink. It can also split a time window as in the case of activity G - due 
to propagation, activity G's window was split into two. As we can see from figure 6 
most of the work in this global search theory is performed by constraint propagation. 
Splitting corresponds to just selecting the next activity to schedule, using a heuristic 

11 



Global Search Theory for Scheduling 

Definite State of Plant Below Safety Threshold 

Global Search Theory for Time Window Refinement 

Potential State of Plant Below Safety Threshold 

Figure 5: ROMAN's approach 

that favors shorter schedules3, 
been scheduled. 

Extraction takes place when all the activities have 

The operator extract corresponds to the second global search algorithm. Refinement 
of time windows takes place if after applying the initial global search to the outage 
problem the potential state of plant does not satisfy the safety requirements. In other 
words, refinement of time windows is required to enforce the safety constraints over 
the potential period of all the activities in the initial schedule. This is achieved by 
applying a new global search to the formal specification of the outage considering now 
with as input the schedule generated in the initial phase. In this second phase the 
windows of the activities that contribute to the contention periods, i.e., the periods in 
which the potential state of the plant is above the safety threshold, are systematically 
reduced until the potential state of the plant becomes consistent from the safety 
point of view for all the times during the outage. In this global search theory for 
the refinement phase splitting corresponds to reducing the size of the windows of the 
activities involved in the contention periods. 

5.1.2    Constraint Propagation 

One of the important features of our approach is the propagation of constraints. 
Figure 7 illustrates the concept, where psched is a partial schedule, a set of candidate 
solutions, a node of the global search tree.  The following test states that a partial 

3We also define a topological sort of the unscheduled activities according to their levels. An 
activity has level 0 if it has no predecessors. Activities that only have as predecessors activities of 
level 0 have level 1. Activities of level 2 only have as predecessors activities that have level 0 or 1, 
etc. 
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Figure 6: Global search theory for the Outage Problem 

schedule can be extended to a complete feasible schedule:4 

3 (sched) (sched € psched A feasible(sched, activities)) (1) 

However, this test is in general too expensive, computationally.   Instead, we derive 
necessary conditions for (1), filters, i.e.: 

3(sched)(sched G psched A feasible(sched, activities) ty(sched,psched)) 
(2) 

The next step consists in incorporating the filter derived in (2) into psched, i.e.: 

((psched)  «=>• V(sched)(sched e psched =>• ty(sched,psched)) (3) 

The test ((psched) holds when all the candidate solutions in psched satisfy \&. The 
main issue is, when a given psched does not satisfy |, how can we incorporate £ 
into pschedl The answer is to find the greatest refinement of psched, psched , that 
satisfies £. 

4In the particular case of the outage problem, (sched € psched)    <$=>>    (domain(psched) C 
domain(sched)    A   V(i)i G domain(psched))   =>   psched(i).est < sched(i).st < psched(i).lst) 
and feasible(sched, activities)   <=*►   (consistent-separation(sched)   A   consistent-acp(sched)) A 
all-activities-scheduled(activities, sched)) 
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cutting constraint 

psched 

Figure 7: Cutting Constraints 

psched = max^iqsched \ psched 3 qsched A £(x,qsched)} (4) 

which asserts that psched, is maximal over the set of descriptors that refine psched 
and satisfy £, with respect to ordering I]. We want psched to be a refinement of 
psched so that all of the information in psched is preserved and we want psched to^be 
maximal so that no other information than psched and £ is incorporated into psched. 
The refinement relation pschedj 2 pschedi holds when the completions of pschedi 
are a subset of the completions of pschedj. 

KIDS instantiates a program scheme for global search with constraint propagation, 
incorporating £. For more detail on propagation in KIDS see [Smith et al 95]. The 
challenge in order to take advantage of the propagation mechanisms provided in KIDS 
lies in finding £ - even though KIDS provides a tactic to synthesize propagation code 
incorporating £, the derivation of £ using the system relies on lemmas supplied by 

the user which are derived manually. 

In the case of the outage problem, the predicate Consistent-Activity-Separation(schedule) 
states that all the activities in the schedule satisfy the precedence constraints. The 
derivation of cutting constraints from the constraint Consistent-Activity-Separation 
using formulas (2) and (3) leads to the well known constraints on est and 1st, as used 
in PERT. Appendix A has the formal derivation of constraints from the constraint 
Consistent-Activity-Separation. 

The derivation of cutting constraints for Consistent-ACP is less straightforward. Ap- 
pendix B has the formal derivation of constraints from the constraint Consistent-Activity-ACP'. 
An example of a constraint manually inferred from Consistent-ACP applying formu- 

las (2) and (3) follows: 

V(i,tl,t2,act) 
i G domain(se(psched)) A tl = se(psched)(i).time A t2 = se(psched)(i + l).time 
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act € domain(psched) A sacpn(tl,psched) A 
unav-sources(tl, psched) = TSACPL A affects-avail-acps? (act, psched) 
=>•   psched(act).lft < tl V psched(act).est > t2 

Where se(psched) computes the state events of the partial schedule considering the 
definite periods of activities. A state event corresponds to any event that affects the 
state of the plant. The time of the ith state event of the partial schedule is repre- 
sented by se(psched)(i).time, the predicate sacpll(t, sched) tests if at time t the plant 
is in a state of AC power loss, unav-sources(t,psched) = TSACPL tests if at time 
t the number of unavailable AC power resources equals the threshold for AC power 
resource unavailability for a state of AC power loss, affects-avail-acpsi(act, psched) 
tests if the activity act affects an available AC power resource, and psched(act).lft 
and psched(act).est correspond respectively to the latest finish time and earliest start 
time of the activity act of the partial schedule psched. This constraint triggers prop- 
agation for the activities that affect available AC power resources — propagation 
eliminates from the activities' time windows the periods that overlap the intervals 
that correspond to a state of AC power loss with number of unavailable AC power 
resources equal to TSACPL (the threshold). In other words, a new activity that 
affects available AC power resources cannot occur during a period for which the plant 
is operating at the threshold regarding the AC power safety function. 

5.1.3    Interaction Between The Schedule and the State of Plant 

A main principle embodied in our approach is incremental computation - propaga- 
tion illustrates that concept - whenever a new activity is scheduled, all constraints 
are immediately propagated over the schedule. Finite differencing is another transfor- 
mation that allows for incremental computation, by efficiently maintaining the state 
of plant. Roughly, the idea behind finite differencing is to incrementally evaluate an 
expensive expression in a loop, rather than recomputing it from scratch each time. As 
an example, let us assume that function f(x) calls function g(x) and that x changes 
in a regular way. In this case, it might be worthwhile to create a new variable, whose 
value is maintained and which allows for incremental computation. By abstracting 
function / with respect to expression g(x) a new parameter c is added to /'s param- 
eter list (now /(a\ c);) and c ■--- q'x) is added as a new input invariant to /. Any call 
to /, whether a recursive call within / or an external call, must now be changed to 
supply the appropriate new argument that satisfies the invariant - f(x) is changed to 
f(x,g(x)). In this process all occurrences of g(x) are replaced by c. Often, distribu- 
tive laws5 apply to g(h(x)) yielding an expression of the form h'(g(x)) and so h'(c). 

5Laws are assertions that define axioms or theorems, i.e., statements that are always true. An 
assertion is simply a true statement - an example of a law is (A + B) * C = (A * C) + {B * C), or ( 
A and B —* A). The idea is to provide information on how to distribute predicates and functions 
over the main constructors of the variable that changes in a regular way, exactly in the same way 
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The real benefit in the optimization comes from the last step, because this is where 
the new value of the expression g{h(x)) is computed in terms of the old value of g(x). 

Act impacts 

Schedule 

4 
impacts 

t impacts 

State-of-Plant 

Figure 8: Interaction between the schedule and the state 

In the outage problem there are several opportunities for finite differencing since 
the state of the plant is a function of the schedule represented by the constraint 
consistent-acp(schedule). Figure 8 shows the interactions between the state of plant 
and the schedule - when a new activity is scheduled, it impacts the schedule and 
propagation is triggered. Changes in the schedule impact the state of the plant, 
which is incrementally maintained by finite differencing. Changes in the state impact 
the schedule and propagation is triggered, which impacts the schedule and so on. 
The key issue to take advantage of finite differencing is to provide good laws on how 
to distribute the functions to be finite differenced over the main constructors of the 
partial schedule, e.g., over appending an activity to the schedule, increasing the est 
of an activity, etc. 

Appendix A and appendix B contain the formal derivation of cutting constraints 
from the separation constraint and from the ACP constraint, respectively. Appendix 
C contains the domain theory for the outage problem considering the separation 
constraints and the constraints for ACP. Appendix D contains the global search theory 
for scheduling considering the definite period of activities as well as the global search 
theory for time window refinement that takes into consideration the potential period 

of activities. 

6    Performance Results 

The current version of ROMAN was completed in November 1995, and it has been 
demonstrated to several large nuclear power plants such as American Electric Power 
Service, Baltimore Gas k Electric, PECO Energy, etc. The demonstration was suc- 
cessful, and EPRI, a consortium of more than 90% of the utilities in the US, is looking 

one would write a law about how to distribute multiplication over addition. Additionally, laws also 
specify special cases, for instance when dealing with base cases (e.g., empty sequences). 
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Figure 9: Time performance 

into using the approach embodied in ROMAN to build the next generation of outage 
scheduling tools — referred to as Advanced Technology Outage Scheduler. 

ROMAN has proven successful since it clearly extends the current functionality offered 
by existing software tools for outage management. All the technological constraints 
currently used for automatic schedule generation are incorporated into the system. 
In addition, ROMAN produces schedules enforcing safety constraints — AC power 
was used as a proof of concept. 

The current version of ROMAN schedules up to 2,000 activities in approximately 1 
minute on a Sparc 2 (see figure 9). The schedules produced by ROMAN are often 
better than the current solutions since many new possibilities are explored compared 
to manual solutions. Human schedulers tend to aggregate tasks and schedule them 
as blocks rather than exploring interesting possibilities that occur when the activities 
are scheduled separately. 

A key feature of ROMAN that utility personnel find attractive is the robust schedules 
that are generated. The current scheduler generates a schedule that includes start 
time windows for each task. Choosing any start time within the window for a task 
still permits feasible execution of the schedule. The window provides information 
about how critical the start time for a task is - if a predecessor task is delayed, a 
user can decide whether there still enough freedom in the start time window to allow 
on-time completion, or whether it is time to reschedule parts of the overall operation. 

ROMAN currently comes configured with a GUI that displays an interactive Gantt 
chart for tasks, showing their start time window, duration, task description, and 
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predecessors.  Another Gantt chart shows the history of the state of the plant with 
respect to AC power. 

7    Conclusions and Future Work 

ROMAN has successfully demonstrated that outage schedules that satisfy safety con- 
straints can be automatically generated [Gomes & Smith 96]. To develop ROMAN 
into a practical tool requires (1) handling a richer model of the outage domain, and 
(2) faster code. To date we have focused on one particular safety function dealing 
with maintaining adequate sources of AC power. Future work is planned to deal with 
larger and more realistic problems, as well as with other critical safety constraints and 
scheduling scarce resources such as heavy lifts and skilled personnel. Furthermore, 
we plan to experiment other search strategies, in particular local search strategies. 
A more ambitious goal involves the automatic generation of schedules considering 
different levels of risk. 
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Appendix A - Derivation of Constraints from 
the Separation Constraint 

Derivation of f (ar, f) 

The derivation of cutting constraints involves two steps. 

The first step consists of deriving necessary conditions for the feasibility of a solution 
z contained in a space descriptor r, i.e.: 

\/{x:D,r:R,z: R)(Satisfies{z, r) A 0(x, z) =» $(s, z, r)) (5) 

The second step consists of making sure that the space descriptors (themselves) satisfy 
the necessary conditions for containing feasible solutions, i.e.: 

£(x,f) <=» V(z:R)(Satisfies(z,r) =► V(x,z,r)) (6) 

In the following section we describe the derivation of £(x, f) for the safety constraint 
designated by Consistent-Separation. 

Satisfies and Outuput Condition for the Outage Problem 

Conventions: 

• psched - partial schedule 

• sched - schedule 

Def : Satisfies(sched,psched) 

domain(psched) C domain(sched)  A 
y(0 
i € domain(psched)) 
=$■ psched(i).est < sched(i).st < psched(i).lst 

Def : 0(acts, psched) 

consistent-separation(sched)  A 

21 



consistent-acp(sched)) A 
all-activities-scheduled (acts, sched) 

Derivation of Cutting Constraint for Separation 

Given the following definition for a separation constraint: 

Def : consistent-separation(sched) 

V(i,j) 
i G domain(sched) A j £ domain(sched(i).pred) 
=$-   sched(i).st > sched(i).pred(j).st + sched(i).pred(j).duration 

Since: 

(A => 5) A (B =► 5') 

(A =* 5') 
And by definition of Sat: 

sched(i).st > sched(j).st + sched(j).duration 
=>• psched(i).lst > sched(i).pred(j).st+ 

sched(i).pred(j).duration 
And since: 

sched(i).pred(j). duration = psched(i).pred(j).duration 
And Assuming: 

sched{i).pred(j) = sched(j) 
psched(i).pred(j) = psched(j) 
sched(i) .pred(j) .duration = sched(j).duration 
psched(i) .pred(j) .duration = psched(j).duration 

V(«,i) 
z G domain(psched) A j £ domain(psched(i).pred) 

=>■ psched(i).lst > sched(j)st + psched(i).duration 

Which corresponds to a cutting constraint, derived from consistent-separation(sched)).6 

6As     we     will    show     below,      another     cutting    constraint    can     be     derived     from 
cons?stfe7if-separafa'o7i(sc/ieeQ. 
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Instantiation of £ for the cutting constraint for consistent-separation(sched)). 

£(x,r)  <=> V{z:R)(Satisfies(z,r)  =>  V(x,z,r)) (7) 

(Satisfies(z,r) A  0(x,z)) (8) 

In the outage problem, the expressions for Satisfies(z,r) and ^(x,z,f) (for the 
consistent-separation) are: 

Def : Satisfies(sched,psched) 

domain(psched) C domain(sched)   A 
v(«) 
z € domain(psched)) 
=$> psched(i).est < sched(i).st < psched(i).lst 

Def : ip(acts,sched,psched) (for the consistent-acp) 

V(t,j) 
z € domain(psched) A j € domain(psched(i).pred) 

=$■ psched{i).lst > sched(j).st + psched(j).duration 

Combining both we can instantiate ^(act^psched) i.e., 

£(act,psched)  -<=^ V(sched)(Satisfies(sched,psched)  =>•  ^>(act,sched,psched)) 
(9) 

Def : ^(actjpsched) 

V(sched) 
domain(psched) C domain(sched)  A 

v(0 
i € domain(psched)) 
=>• psched(i).est < sched(i).st < psched(i).lst 

=► v(M 
A; € domain(psched) A j 6 domain(psched(k).pred) 
=4> psched(k).lst > sched(j).st + psched(j).duration 
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Since:    A A B =* C 

B => C 

\/(sched) 
domain{jpsched) C domain(sched) 

=* v(i) 
i € domain(psched)) 

psched(i).est < sched(i).st < psched(i).lst 

& € domain{psched) A j € domain(psched(k).pred) 
psched(k).lst > sched(j).st + psched(j).duration 

Since:    j € domain(psched(i).pred) C domain(psched) 

V(sched) 
domain(psched) C domain(sched) 
=> V(«) 

z € domain(psched)) 
=> psched(i).est < sched(i).st < psched(i).lst 

=» V(fc,j) 
& 6 domain{psched) A j € domain(psched) A j G domain(psched(k) .pred) 

=$■ psched(k).lst > sched(j).st + psched(j).duration 

Since:    A A ß ^ C 

V(sc/iee?) 
domain(psched) C domain(sched) 

=► v(.') 
i € domain(psched)) 
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3- psched(i).est < sched(i).st < psched(i).lst 

=> v(i) 
j G domain(psched) 

=» V(*r) 
k G domain(psched) A   A j G domain(psched(k).pred) 

==>■ psched(k).lst > sched(j).st + psched(j).duration 

Since:    V(K)K € 5 =* P(ÜT) 

v(Ä")ür € 5 A r(üO => g(Ä") 

V(Ä-)ÜT G5^ P(tf) => Q(K) 

W(sched) 
domain(psched) C domain(sched) 

v(i) 
i G domain(psched)) 
==> psched(i).est < sched(i).st < psched(i).lst 

=► V(fc) 
fc G domain(psched) A   A i G domain(psched(k).pred) 

==> psched(k).lst > sched(i).st + psched(i).duration 

\/(sched) 
domain(psched) C domain(sched) 
=► v(i) 

i G domain(psched)) 
psched(i),est < sched(i).st < psched(i).lst 

=> V(*)' 
& G domain(psched) A   A i G domain(psched(k).pred) 

==> psched(k).lst > sched(i).st ■+ psched(i).duration 

Since:    A =» 5 ==> C 
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A A B => C 

W(sched) 
domain(psched) C domain(sched) 
=► V(i) 

i G domain(psched)) 
=>■ psched(i).est < sched(i).st < psched(i).lst 

AV(fc) 
fc G domain(psched) A   A i G domain(psched(k).pred) 

=>- psched(k).lst > sched(i).st + psched(i).duration 

Since:    A => (ß A C) 

(A A B) =»  C 

=4> 

domain(psched) C domain(sched) 
=> V(»,fc) 

i G domain(psched)) A & G domain{psched) 
A i € domain(psched(k) .pred) A psched(i).est < sched{i).st 

sched(i).st < psched(i).lst 
=>• psched(k).lst > sched(i).st -\- psched(i).duration 

V(sched) 
domain(psched) C domain(sched) 

i G domain(psched)) A & G domain{jpsched) 
A i G domain(psched(k).pred) A psched(i).est < sched(i).st 
=>• sched(i).st < psched(i).lst 

=$> sched(i).st < psched(k).lst — psched(i).duration 

Replacing sched with qsched: 

26 



domain(qshed) = domain(psched) 
V(a) a G domain(qshed) 

=>• qsched(a) = sched(a) 
(Assuming that each activity has the 
index in psched, qsched, and sched) 

Since:    (A' =► A) A (A => B) 
==> 
(A1 =► B) 

W(qched) 
domain(psched) C domain(qsched) 
=> V(i,fc) 

i G domain(psched)) A A: G domain(psched) 
A i G domain(psched(k).pred) A psched(i).est < qsched(i).st 
==>• qsched(i).st < psched(i).lst 

=>■ qsched(i).st < psched(k).lst — psched(i).duration 

Since:    V(m) S(m) 

V(a) a G domain(m) A T(a) 
==>-  (m(a) < p(a)  =$■ m(a) < q(a)) 

S(p) A V(a) a G domain(p) A T(a) 

=»  (p(a) < ?(a) 

V(t,*) 
i G domain(psched)) A A; G domain(psched) 
A i G domain(psched(k).pred) 
=$■ psched(i).lst < psched(k).lst — psched(i).duration 

<=> 
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V(i, k) 
i € domain(psched)) A & € domain(psched) 
A z € domain(psched(k).pred) 
=>• psched(i). 1st + psched(i).duration < psched(k).lst 

Since:    psched(i).lst + psched(i).duration = psched(i).lft 

<(=4> 

V(i,*) 
i € domain(psched)) A k € domain(psched) 
A i € domain(psched(k).pred) 
=> psched(i).lft < psched(k).lst 

Since:    j G domain(psched(i) .pred) C domain(psched) 

<=> 

V(«, *) 
fc € domain(psched) 
A fG domain(psched(k).pred) 
==>■ psched(i).lft < psched(k).lst 
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Appendix B - Derivation of Constraints from 
the ACP constraint 

Derivation of f (x, r) 

The derivation of cutting constraints involves two steps. 

The first step consists of deriving necessary conditions for the feasibility of a solution 
z contained in a space descriptor r, i.e.: 

V(x : D,r:R,z: R)(Satisfies(z, r) A 0{x,z) =► #(x,z, r)) (10) 

The second step consists of making sure that the space descriptors (themselves) satisfy 
the necessary conditions for containing feasible solutions, i.e.: 

£(x, f)  «=* V(z : R)(Satisfies{z, f) =» *(x, z, r)) (11) 

In the following section we describe the derivation of £(x, f) for the safety constraint 
designated by AC Power. 

Satisfies and Outuput Condition for the Outage Problem 

Conventions: 

• es(sched) - event sequence - sequence of events of sched 

• sacpl1{t, sched) - is the state a state of acp loss, at time t given sched? 

• avacpr(t, sched) - number of acp resources available, at time t, given sched 

• AC PR - set of ACP resources 

• au?(x,i, sched)/unav?(x,t, sched)- is resource x available (unavailable) at time 
t, given sched? 

• affects?(x, y) does activity x affect resource y? 

Def : Satisfies (sched, psched) 

domain(psched) C domain(sched)  A 
V(i : i € domain(psched)) 

psched(i).est < sched(i).st < psched(i).lst 
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Def : 0(acts,psched) 

consistent-separation(sched)  A 
consistent-acp(sched)) A 
all-activities-scheduled [acts, sched) 

Derivation of Cutting Constraint for AC Power 

Given the following definition for a safety constraint for AC Power: 

Def : consistent-acp(sched)) 

V(i,tut2) 
i € domain(es(sched))   A   tx = es(sched)(i) A t2 = es(sched)(i + 1) 
==>    sacpl?(t, sched) 

=>   avacpr(< ti,t2 >,sched) > T' 

Since:    A => B => C 

A A B => C 

4=4- 

V(i,*i,<2) 
i 6 domain(es(sched))   A   ti = es(sched)(i) A t2 = es(sched)(i + 1) 
A  sacplt{t, sched) 
=4-    avacpr(< ti,t2 >,sched) >T' 

Since:    at;acpr(< £1,^2 >, sched) > T' 
4=4- 

unavacpr(< h,t2 >, sched) < TACPR — T' — T) 

4=4- 

V(«,*i,t2) 
i G domain(es(sched))   A   ii = es(sched)(i) A t2 = es(sched)(i + 1) 
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A  sacpll(t,sched) 
=$■   unavacpr(<ti,t2>,sched)<T 

Since:    E*<=SA.P(X) 1 <T 

V(Ä) 
RCS   A |Ä| = T A E,eRAF(x) 1 = T A 
V(y) y G 5/Ä 

V(t,*i,<2) 
t G domam(es(scfce(f))   A   *i = es(scÄed)(«) A *2 = es(sched)(t + 1) 
A sacpl1(t,sched) 
=4>     V(Ä)Ä C ACPi?     A   |Ä| = T   A   EK£R A unat/?(*,<ti,ta>.*A«Q ! = r 

A V(y) y G ACPR/R 
=»  av7(y,<ti,t2>,sched) 

Since:    au?(y, < <i,*2 >, scÄed) 

V(i) i G domain(sched) A affects'!'{j,y) 
=£-   -> during(j,<ti,t2 >) 

V(t,<i,*2) 
t G domatn(es(acÄed))   A   *i = es(sc/jed)(i) A *2 = es(sched)(i + 1) 
A  sacpll(t,sched) 
=4>   V{R)RCACPR   A |i?| = T A E*eR A «»«;?(*,««, ,t2>,«A«Q X = T 

A V(y) y G ACPR/R 
=>•   V(j) j G domain(sched) A affectst(j,y) 

=>> -*during(j, < *i,J2 >) 
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Substituting ->during(j, < ti,t2 >) 

<=> 

V(i,*i,*2) 
i G domain(es(sched))   A   ti = es(sched)(i) A t2 = es(sched)(i + 1) 
A  sacpl!(t,sched) 
=*     V(R)R C ACPÄ    A   |Ä| = T   A   E,£R A unavl{x,<t„t,>,sched) 1 = T 

A V(y) y G ACPR/R 
=>•   V(j) j € domain(sched) A affects!(j,y) 

=> sched(j).ft < h V sched(j).st > t2 

Since:    A =>■ 5 ==>• C 

4=> 

V(»,*i,<2) 
i G domain(es(sched))   A   h = es(sched)(i) Af2 = es(sched)(i + 1) 
A  sacpP.{t,sched) A   V(R)RCACPR   A |Ä| = T A 

E,eH A «u,«?(,,<ilfia>,«*«o 1 = T A V(y) 2/ G ACPß/Ä 
A V(j) j G domain(sched) A affects!(j,y) 
=> sched(j).ft < ti V sched(j).st > t2 

Pulling out all the quantifiers: 

V(*,<i,<2,i,Ä,y) 
i G domain(es(sched))   A   h = es(sched)(i) A t2 = es(sched)(i + 1) 
A j G domain(sched) ARC ACPR   A \R\ = T A 

ZxZR A un«„?(*,<ti,t2>,.cfc«Q 1 = TA  V e ACPR/R 
A  sacpH(t,sched) A affects!(j,y) 
==> sched(j).ft < ti V sched(j).st > t2 
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r 

Since:    (A' => A) A (A => B) 

(A' =* 5) 

And:      (assuming that each activity has the 
same index in psched and sched) 
domain(psched) C domain(sched) 

domain(es(psched)) C domain(es(sched)) 

V(i) i 6 domain(psched) A pes(psched)(i) 
=> pes(psched)(i) C es(sched)(i) 

V(<i,<2) unav?(x,<ti,t2 >,psched) 
=>•■ unav!(x,<t1,t2 >, sched) 

V(», <i,*2, i,-R,y) 
i € domain(pes(psched))   A   <i = pes(psched)(i) A t2 = pes(psched)(i + 1) 
A;'e domain(psched) ARC ACPR   A \R\ = T A 

2sx€R A unat;?(a;,<t1,<2>,p«cfted) 1 = i    A   !/€ ACPR/R 

A  sacpl!(t, psched) A affects! (j,y) 
=>■ sched(j).ft < <i V sched(j).st > t2 

Replacing < ^,t2 > with < UB,LB >C< ^,£3 >, where: 

given a generic time 2 (ti or t2), ac£ the corresponding 
activity that triggers that event at time £, type-event = s 
if the event corresponds to the start of act,type-event = / 
otherwise: 

// type-event = s 
Then act.lst 
Else act.lft 
(Notice that UB>h) 

LB = 
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If type-event = 5 
Then act.est 
Else act.eft 
(Notice that LB > t2) 

And since: 

(A =► B) A (B =► 5') 

V(«',*i,*2,i,-R,j/) 
i € domain(pes(psched))   A   ti = pes(psched)(i) A t2 = pes(psched)(i + 1) 
A j'e domain(psched) ARC AC PR   A \R\ = T A 

52x£R A unavl(x,<tut2>,psched) 1 =T   A   \) € ACPR/R 

A  sacpP.(t,psched) A affectsl(j,y) 
=► sched(j).ft <UB V sched(j).st > LB 

Which corresponds to the cutting constraint, derived from consistent-acp(sched)). 

Instantiation of £ for the cutting constraint for consistent-acp(sched)). 

((x,r)  «=> V(z:R)(Satisfies(z,r) =► tf(z,*,r)) (12) 

In the outage problem, the expressions for Satisfies(z,r) and ^(«,2, r)  (for the 
consistent-acp) are: 

Def : Satisfies(sched,psched) 

domain(psched) C domain(sched)  A 
y(0 
i € domain(psched) 
=>■ psched(i).est < sched(i).st < psched(i).lst 

Def : tj}{acts, sched,psched) (for the consistent-acp) 
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V{i,h,t2,j,R,y) 
i e domain(pes(psched))   A   U = pes(psched)(i) A t2 = pes(psched){i + 1) 
A j E domain{psched) A   R C AC PR   A \R\ = T/\ 

E*£fi A«nat,7(*,<ti,t2>j»«Ae<*) 1 = TA^ ACPR/R 
A  sacpH(t,psched) A affects'! (j,y) 
=* sched(j).ft <UB V sched{j).st > LB 

Combining both we can instantiate £(act,psched) i.e. 

£(act,psched) 4=> V{sched)(Satisfies(sched,psched) =*  y(act,sched,psched)) 

Def : £(act,psched) 

V(sched) 
domain(psched) C domain(sched)  A 

i € domain(psched) 
=> psched(i).est < sched(i).st < psched(i).lst 

=^ V(fc,«i,*2,i,Ä,y) .    ,  _„    1X 
k (E domain{pes(psched))   A   *i = pes{psched)(k) A *2 = pes{psched){k + I) 
A j € domain(psched) ARC ACPR   A |£| = T A 

E*gÄ A „„«,?(*,<«, ,ta>,p.c*e«*) 1 = T  A  y € ACPR/R 
A  sacpn(t,psched) A affects!(j,y) 
=► sched{j).ft <UB V sched{j).st > LB 

Since:    A A 5 =^ C 

V(sc/ied) 
domain(psched) C domain(sched) 

i £ domain(psched) 
=> psched(i).est < sched(i).st < psched(i).lst 
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* V(Mi,*2,j,Ä,y) 
k G domain(pes(psched))   A   *i = pes(psched)(k) A *2 = pes(psched)(k + 1) 
A ;' € domain{psched) A   Ä C ACPi?   A |Ä| = T A 

EzGÄ A uno«?(r,<t1,t2>,psc/ied) 1 = T   A   T/ G ACPR/R 

A sacpn(t,psched) A affectsl{j,y) 
=► sched(j).ft <UB V sched(j).st > LB 

Rearranging quantifiers 

V(sc/jec?) 
domain(psched) C domain(sched) 
=► v(0 

i G domain(psched) 
=4> psched(i).est < sched(i).st < psched(i).lst 

=>- V(j) j G domain(psched) A 
V(Mi,*2,#,y) 
A; G domain(pes(psched))  A 
<! = pes(psched)(k) A t2 = pes(psched)(k + 1) 
A  Ä C ACPÄ   A |Ä| = T A 

E^efi A unai;?(:F)<ti,*2>,psc/ied) 1 = ^   A   J/ G ACPR/R 

A sacpU(t,psched) A affects!(j,y) 
=» sched(j).ft <UB V sched(j).st > LB 

Since:     AAß=>C 

■5 =» C 

V(sc/iecQ 
domain(psched) C domain(sched) 
=► V(i) 

i G domain(psched) 
=>- psched(i).est < sched(i).st < psched(i).lst 

=$■ V(j) j G domain(psched) 

=> V(fc,«i,<2,Ä,y) 
A; G domain(pes(psched))  A 
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h = pes{psched)(k) A t2 = pes(psched){k + 1) 
A  R C ACPPt   A |ß| = T A 
v ,,  '    , .    u * 1 = T A w € ACPR/R 
A sacpll{t,psched) A affectsl{j,y) 
=»' sched{j).ft < UB V sched(j).st > LB 

Since:    V(K)# € S =* P(#) 
—s. 

V(tf)tf € 5 =» P(A')  =► Q(#) 

V(sc/ied) 
domain(psched) C domain(sched) 

=* V(z) 
i 6 domain(psched) 
=* psched(i).est < sched(i).st < psched(i).lst 

=► y{k,h,t2,R,y) 
k G domain(pes(psched))  A 
<i = pes(pscftecO(fc) A *2 = pes(psched){k + 1) 
A i? C ACPP   A |Ä| = T A 
v , .  - l = T A « € ACPR/R 

A sacpl?{t,psched) A affects?[i,y) 
=► sched{i).ft <UB V sched(i).st > LB 

Since:    A =► P =► C 
4=> 

V(sc/iee?) 
domain(psched) C domain(sched) 

=» v(0. 
z e domain(psched) 
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=>• psched(i).est < sched(i).st < psched(i).lst 

AV(fc,M2,#,y) 
k G domain(pes(psched))  A 
ti = pes(psched)(k) A t2 = pes(psched)(k + 1) 
A RC ACPR   A \R\ = T A 

Exefl A unau?(i,<ti,t2>,psc/ied) 1 = T   A   J/ G ACPR/R 
A sacpl?(t,psched) A affects7{i,y) 
=► sched(i).ft <UB V sched(i).st > LB 

Since:    A => (5 A C) 

(A A B) =4 C 

V(sc/ieeZ) 
domain(psched) C domain(sched) 

=► V(«) 
i G domain(psched) A 
V(Ä:,<i,«2,J>-R,y) 
A; G domain(pes(psched))  A 
<! = pes(psched)(k) Ai2= pes(psched)(k + 1) 
A  Ä C ACP#   A |Ä| = T A 

Eseß A unoi;?(a;,<ti,*2>,p5c/ied) 1 = T   A   J/ G ACPR/R 
A sacpP.{t,psched) A affects1{j,y) 

sched(i).st < psched(i).lst 
psched(i).est < sched(i).st 
=» sched(i).ft <UB V sched(i).st > LB 

Treating one disjunct: 

V(sc/iee?) 
domain(psched) C domain(sched) 

i G domain(psched) A 
V(fc,*i,*2,J,-R,y) 
fc G domain(pes(psched))  A 
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ti = pes(psched)(k) A t2 = pes(psched)(k + 1) 
A R C ACPß   A |Ä| = T A 

Eiefl A unav?(x,<tut2>,psched) 1 — T   A   ?/ G ACPR/R 
A sacpll(t,psched) A affectsl(j,y) 

sched(i).st < psched(i).lßt 
=$■ psched(i).est < sched(i).st 

=4> LJB < sched(i).st 

Replacing sched with qsched: 
domain(qshed) = domain(psched) 
V(a) a € domain(qshed) 

=>■ qsched(a) = sched(a) 
(Assuming that each activity has the 
same index in psched, qsched, and sched) 

Since:    (A' => A) A {A =►■ B) 

(A1 =* B) 

V(qsched) 
domain(psched) C domain(qsched) 

i € domain(qsched)) A 

V(fc,«i,<2,j,Ä,y) 
& 6 domain(pes(psched))  A 
<i = pes(psched)(k) A t2 = pes(psched)(k + 1) 
A RCACPR   A |Ä| = TA 

Exgfl A unat;?(x,<ti,t2>,psc'ied) I =T   A   y E ACPR/R 
A sacpl?(t,psched) A affectst(j,y) 

qsched(i).st < psched(i)Jst 
=> psched(i).esi < qsched(i).st 

=3- Li? < sched(i).st 

Since:    V(m) S(m) 

V(a) a € domam(ra) A T(a) 
=>  (p(a) < m(a) =£> </(a) < m(a)) 
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S(p) A V(a) a € domain(p) A r(o) 

V(i) 
i € domain(psched) A 

V(Mi,<2,J,Ä,y) 
& € domain(pes(psched))  A 
<! = pes(pseÄed)(fc) A i2 = pes(psched)(k + 1) 
AiJC ACPÄ   A |Ä| = T A 

ExeÄ A tmat>?(*I«ilt2>,P«cfce<0 1 = T  A 2/ € ACPR/R 
A  sacpl?(t,psched) A affects'! (j,y) 
=$■ LB < psched(i).est 

Treating the second disjunct: 

V(sched) 
domain(psched) C domain(sched) 
=► v(i) 

i G domain(psched) A 

V(Mi,t2,j,-R,y) 
A; € domain(pes(psched))  A 
<i = pes(psched)(k) A i2 = pes(psched)(k + 1) 
A Ä C ACTÄ   A |Ä| = T A 

ErgÄ A unat>?(s,<ti,t2>,p*cfced) 1 = 2"*   A   J/ € ACPR/R 

A  sacpP.(t,psched) A affects?(j,y) 
psched(i).est < sched(i).st 
=4* sched(i).st < psched(i).lst 

=► sched(i)~ft < UB 

Since:    sched(i).ft < UB 

sched(i).st < UB - sched(i).duration 
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V(sched) 
domain(psched) C domain(sched) 

=► v(i) 
i 6 domain(psched) A 

V(Mi,*2,j,Ä,y) 
jfc G domain(pes(psched))  A 
ix = pes(|MCÄe(f)(k) A t2 = pes(psched)(k + 1) 
AÄC ACPi?   A |Ä| = T A 

£.£* A unav->(x,<tut2>,psched) 1 = T   A   J/ € ACPR/R 
A  sacpll(t, psched) A affects?(j,y) 

psched(i).est < sched(i).st 
=^ sched(i).st < psched(i).lst 

==> sched(i).st < UB - sched(i).duration 

Replacing sched with qsched: 
domain(qshed) = domain(psched) 
V(a) a € domain(qshed) 

==$■ qsched(a) = sched(a) 
(Assuming that each activity has the 
same index in psched, qsched, and sched) 

Since:    (A' =► A) A {A =► B) 

(A' => B) 

\/(qsched) 
domain(psched) C domain(qsched) 

==► V(t) 
i G domain(qsched)) A 

V(fc,ti,i3,J,A,y) 
fc £ domain(pes(psched))  A 
tj = pes(psc/ied)(A;) A<2 = pes(psched)(k + 1) 
A £ C ACPE   A \R\ = TA 

ExtR A unoi;?(*,<«i,ta>rf'»cfc«0 1 = T   A   ^ € ACPRIR 

A  sacpll(t, psched) A affectsl(j,y) 
psched(i).est < qsched(i).st 
==>■ qsched(i).st < psched(i).lst 

=► qsched(i).st <UB - qsched(i).duration 
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Since:    V(m) S(m) 

V(a) a € domain(m) A T(a) 
=£•  (m(a) < p(a)  =3> m(a) < q(a)) 

S(p) A V(a) a € domain(p) A T(a) 

=*  (l>(a) < ?(a) 

v(0 
i G domain(psched) A 

V(fc,*i,<2,i,-ß,y) 
A; G domain(pes(psched))   A 
£1 = pes(psched)(k) A £2 = pes(psched)(k + 1) 
A  RCACPR   A  |Ä|=TA 

SxGÄ A uno«?(ar,<ti,t2>,pscÄed) 1 = ^   A   2/ € ACPR/R 

A  sacpl!(t,psched) A affects'! (j,y) 
=$■ psched(i).lst < UB — pched(i).duration 

Since:    psched(i).lst < UB — pched(i).duration 

psched(i).lft < UB 

V(i) 
z € domain(psched) A 

V(Mi,*2,i,-R,y) 
A; G domain(pes(psched))  A 
£1 = pes(psched)(k) A <2 = pes(psched)(k + 1) 
A RCACPR   A |Ä|=TA 

Z/zeß A unat;?(a;,«1,<2>,pscAed) 1 = -*    A   ?/ G ACPR/R 

A  sacpl1{t,psched) A affects!(j,y) 
=4> psched(i).lft < UB 
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Appendix C - Domain Theory for the Outage 
Problem 

!!   in-package("RE") 
!!   in-grammarOTHEORY-GRAMMAR,   'REGROUP) 

THEORY SAFE-OUTAGE 

I  
THEORY-IMPORTS {} 

I  
THEORY-TYPE-PARAMETERS O 

y,  
THEORY-TYPES 

yt  Basic Types   
type time = integer 

type quantity = integer 

type state-res = symbol 

type acploss-i = integer */,(0 - yes ; 1 no) 

type list-av-ress = set(state-res) 

type set-of-acts-acploss = set(activity) 

type state-type 
= tuple(acploss?: acploss-i, 
num-unav-ress: integer, 
unav-res-map: map(symbol, set(symbol)), 
list-av-ress:set(state-res)) 

type st-hist-map = map(time, state-type) 

'/, dependent on the input data 
constant *initial-state-map*: st-hist-map 

= -CIO -> < 1, 0, {||}, { 'divl, 'div2, 'div3, 'div4, 'sulO, 'su20 }>|} 
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type pred-succ-act 
= tuple(id: symbol, lag: integer, tie: symbol) 

•/,  Activity   
type activity = tuple(act-name : symbol, 

predecessors : seq(pred-succ-act), 
duration : integer, 
est : integer, 
1st : integer, 
st : integer, 
ft : integer, 
effect-set: set(symbol) 

) 

Schedule 

type sched = seq(activity) 

'/0 State Related Types and Constants 

constant *acp-sources* : map( symbol , seq(symbol)) 
= {I 'on-site -> [ 'divl, 'div2, 'div3, Jdiv4], 

'off-site -> [ 'sulO, Jsu20], 
'control-variable -> [ 'acploss] 1} 

%  

THEORY-OPERATIONS 
JJ  
'/, resources are assumed to be unlimited 

•/, Top Level Functions 

function pos-safe-outage 
(def-sched: seq(activity) 

I size(def-sched) > 0 
&    Consistent-Activity-Separation-EST(def-sched) 
& Consistent-Activity-Separation-LST(def-sched) 
& Consistent-ac-power-propl(def-sched, 

construct-state-map-def(def-sched) ) 
& Consistent-ac-power-prop2(def-sched, 

construct-state-map-def(def-sched) )) 
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returns (schedule: seq(activity) 
I consistent-ac-power(schedule) 
& All-activities-scheduled(def-sched, schedule))*/, completeness 

function safe-outage-windows 
(activities: seq(activity)I size(activities) > 0) 

returns (schedule: seq(activity)  I 
Consistent-Activity-Separation-EST(schedule) & 

Consistent-Activity-Separation-LST(schedule) & 
Consistent-ac-power(schedule)& 
All-activities-scheduled(activities, schedule))!/, completeness 

mmmmmmmmmn consistent Activity-separation nnnmmnm 

function Consistent-Activity-Separation-EST 

(schedule : seq(activity)) 

: boolean 
= fa (i : integer, j :integer, act : activity) 

(i in [1 .. size(schedule)] 
& j in [1 .. size(schedule(i).predecessors)] 
& act = get-activity(schedule, schedule(i).predecessors(j)) 

& defined?(act) 
=> (act.est + act.duration + schedule(i).predecessors(j).lag) 

<= scheduled) .est) 

function Consistent-Activity-Separation-LST 

(schedule : seq(activity)) 

: boolean 
=  fa (i : integer, j :integer, w: integer) 

(i in [1 .. size(schedule)] & 
j in [1 .. size(schedule(i).predecessors)] & 
w = get-activity-index(schedule, schedule(i).predecessors(j).1) 

=> (schedule(i).lst - schedule(w).duration >= schedule(w).1st )) 

xxxxxmxxmxxxxxmmxxxxx consistent Ac-power xxmxxxxxxxxxxxxmxxxmxxx 
function Consistent-ac-power 

( schedule: sched) : boolean 
= let (state-hist-map: st-hist-map 

= construct-state-map(schedule)) 
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fa (tl:integer) 

(tl in domain(state-hist-map) 

=> state-hist-map(tl).num-unav-ress 
<= (1 + state-hist-map(tl).acploss?)) 

mmmmmmmnmi state-of-piant x%xxx%xxxxx%%xx%%%%%xxx%%%xx%xx% 

function Construct-state-map(schedule: sched) 

: st-hist-map 
= construct-state-map-aux(schedule, *initial-state-map*) 

function Construct-state-map-aux(schedule: sched, init-st-hist: st-hist-map) 

: st-hist-map 

= if empty(schedule) 

then init-st-hist 

else if empty(first(schedule).effect-set) 

then construct-state-map-aux(rest(schedule), init-st-hist) 

else construct-state-map-aux(rest(schedule), 

init-st-hist +* add-act-map(first(schedule), 

first(schedule).effect-set, 

first(schedule).st, 
first(schedule).ft, init-st-hist)) 

function add-act-map 

(act: activity, 
list-effects: set(symbol), 

tl: time, t2: time, 
state-hist-map: st-hist-map) 

: st-hist-map 

= if tl >= t2 

then {||} 
else (let (start-event-map: st-hist-map 

= add-event-map-seq(act,list-effects, 

tl, t2, state-hist-map)) 

start-event-map 
+* add-event-map(act,list-effects, t2, 'f, 

state-hist-map +* start-event-map)) 

function fd-def-app 

(act: activity, ps: seq(activity), 

list-effects: set(symbol), 
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tl: time, t2: time, 
state-hist-map: st-hist-map) 

: st-hist-map 

= if tl >= t2 
then{||} 
else *call-def* <- append(*call-def*, <act, tl, t2, 'app>); 

(let (start-event-map: st-hist-map 
= add-event-map-seq(act,list-effects, 

tl, t2, state-hist-map)) 

start-event-map 
+* add-event-map(act,list-effects, t2, 'f, 

state-hist-map +* start-event-map)) 

function fd-def-ext-est 

(ind: integer, ps: seq(activity), 
list-effects: set(symbol), 

tl: time, t2: time, 
state-hist-map: st-hist-map) 

: st-hist-map 
= let (begin-time: integer= max(tl,ps(ind).1st)) 

(if ps(ind).1st >= t2 

then {||} 
else *call-def* <- append(*call-def*, <ps(ind), tl, t2, 'est>); 

(let (start-event-map: st-hist-map 
= add-event-map-seq(ps(ind),list-effects, 

begin-time, t2, state-hist-map)) 
start-event-map 
+* add-event-map(ps(ind) ,list-effects, t'2, 'f, 

state-hist-map +* start-event-map))) 

function fd-pos-ext-est 
(ind: integer, ps: seq(activity), 
list-effects: set(symbol), 

tl: time, t2: time, 
state-hist-map: st-hist-map) 

: st-hist-map */, returns all the entries that changed 

= if tl >= t2 
then {||} 
else (let (start-event-map: st-hist-map 

= del-event-map-seq(ps(ind),list-effects, tl, t2, state-hist-map)) 

(start-event-map +* add-event-map(ps(ind),list-effects, t2, 's, 

state-hist-map +* start-event-map))) 
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function fd-pos-ext-lst 

(ind: integer, ps: seq(activity), 

list-effects: set(symbol), 

tl: time, t2: time, 

state-hist-map: st-hist-map) 
: st-hist-map '/,  returns all the entries that changed 
= if tl >= t2 

then {||} 
else (let (start-event-map: st-hist-map 

= del-event-map-seq(ps(ind),list-effects, tl, t2, state-hist-map)) 

start-event-map +* add-event-map(ps(ind),list-effects, t2, 'f, 

state-hist-map +* start-event-map)) 

function fd-def-ext-lst 
(ind: integer, ps: seq(activity), 

list-effects: set(symbol), 

tl: time, t2: time, 
state-hist-map: st-hist-map) 

: st-hist-map 

= let (end-time: integer= min((ps(ind).est + ps(ind).duration), t2)) 

(if tl >= (ps(ind).est + ps(ind).duration) 

then{||} 
else (let (start-event-map: st-hist-map = 

add-event-map-seq(ps(ind),list-effects, 

tl, end-time, state-hist-map)) 
(if end-time = t2 & t2 ~= ps(ind).est + ps(ind).duration 

then start-event-map 

else (start-event-map +* add-event-map(ps(ind), 

list-effects, end-time, 'f, 
state-hist-map +* start-event-map))))) 

function add-event-map-seq 

(act: activity, 

list-effects: set(symbol), 
tl: time, t2: time, 
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state-hist-map:  st-hist-map) 
:   st-hist-map 
= let  (seq-time:  seq(integer)= 

sort(  [ x  I   (x) x in domain(state-hist-map) 
& x > tl & 

x < t2],  lambda( al,  a2)  al <= a2), 
event-before:  state-type    = 

get-event-before(tl, state-hist-map)) 
let  (update-first:  st-hist-map = 

{|  tl -> update-status-start(tl, act.act-name, 
event-before,list-effects)|}) 

add-event-map-rec(act, list-effects, seq-time, 
state-hist-map+* update-first, update-first) 

function add-event-map-rec 

(act:activity, 
list-effects: set(symbol), 

seq-time: seq(integer), 
state-hist-map: st-hist-map, 

init-map: st-hist-map) 
= if empty(seq-time) 

then init-map 
else let (add-first: st-hist-map = add-event-map(act, list-effects, 

seq-time(l), 's , 
state-hist-map)) 

add-event-map-rec(act, list-effects, rest(seq-time), 

state-hist-map +* add-first, 

init-map +* add-first) 

function add-event-map 

(act: activity, 
list-effects: set(symbol), 
tl: time, type-s: symbol, 
state-hist-map: st-hist-map) 

: st-hist-map 
= (let (event-before: state-type 
= get-event-before(tl, state-hist-map)) 

if type-s = 's 
then -U tl -> 
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update-status-start(tl, act.act-name, event-before,list-effects) 1} 
else -C| -tl -> 

update-status-finish(tl, act.act-name, event-before,list-effects)|}) 

'/, this should be del-partial-act-map 

function del-act-map 
(act: activity, 

list-effects: set(symbol), 

tl: time, t2: time, 

state-hist-map: st-hist-map) 

: st-hist-map '/, returns all the entries that changed 
= if tl >= t2 

then {||} 

else (let (start-event-map: st-hist-map 

= del-event-map-seq(act,list-effects, tl, t2, state-hist-map)) 
if t2 = act.1st + act.duration 

then (start-event-map +* add-event-map(act,list-effects, t2, 'f, 
state-hist-map +* start-event-map)) 

else if tl = ( act.est + act.duration) 

then (start-event-map +* add-event-map(act,list-effects, t2, 's, 
state-hist-map +* start-event-map)) 

else start-event-map ) 

function del-event-map-seq 
(act: activity, 

list-effects: set(symbol), 
tl: time, t2: time, 

state-hist-map: st-hist-map) 
: st-hist-map 

= let (seq-time: seq(integer)= 

sort( [ x I (x) x in domain(state-hist-map) 
& x > tl & 

x < t2], lambda( al, a2) al <= a2), 

event-before: state-type = get-event-before(tl, state-hist-map)) 
let (update-first: st-hist-map= 

{I tl -> 

update-status-finish(tl, act.act-name, event-before,list-effects)|}) 
del-event-map-rec(act, list-effects, seq-time, 

state-hist-map +* update-first, update-first) 
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function t-find-event-before 
(tl: integer, ml: map(integer,set(integer))) 

: set(integer) 
= ml(t-time-before-in-domain(ml,tl, ml(tl))) 

function t-time-before-in-domain 
( ml: map(integer,set(integer)), i-ti: integer, i-ti-val: set(integer)) 

: integer = 
let (val = undefined) 

ti-val = ml(ti) 

& ti < i-ti 
& (defined?(val) => ti > val) 

—> val <- (val; ti); 

val 

function del-event-map-rec 

(act:activity, 
list-effects: set(symbol), 

seq-time: seq(integer), 
state-hist-map: st-hist-map, 

init-map: st-hist-map) 

= if empty(seq-time) 

then init-map 
else let (add-first : st-hist-map= add-event-map(act, list-effects, 

seq-time(l), 'f , 
state-hist-map)) 

del-event-map-rec(act, list-effects,        rest(seq-time), 
state-hist-map +* add-first, 
init-map +* add-first) 

function   get-event-before 
(tl: time,    state-hist-map:  st-hist-map) 
:   state-type 
= if defined?(state-hist-map(tl)) 

then state-hist-map(tl) 
else find-event-before(tl, state-hist-map) 

function find-event-before 
(tl:  time,  state-hist-map:  st-hist-map) 
:   state-type 
= state-hist-map(time-before-in-domain(state-hist-map, 
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tl, state-hist-map(tl))) 

function value-in-interval-map 

(size-def-reserv-m: map(time, alpha), i-ti: time) 

: alpha = 
let (var val = 0, var prev-dom-el = undefined) 

ti-val = size-def-reserv-m(ti) 

& ti <= i-ti 
& (defined?(prev-dom-el) => ti > prev-dom-el) 

—> (val <- (val; ti-val); '/, This is a hack to avoid an early stop 

prev-dom-el <- (prev-dom-el; ti)); 

val 

function load-map-equal? 

(ml: st-hist-map, m2: st-hist-map): boolean = 

fa(ti) (ti in domain(ml) union domain(m2) 
=> value-in-interval-map(ml, ti) = value-in-interval-map(m2, ti)) 

function time-before-in-domain 
(state-hist-map: map(time, state-type), i-ti: time, i-ti-val: state-type) 

: time = 
let (val = undefined) 

ti-val = state-hist-map(ti) 

& ti < i-ti 
& (defined?(val) => ti > val) 

—> val <- (val; ti); 

val 

function time-after-in-domain 
(  i-ti: time,  i-ti-val: quantity, 

def-state-map: map(time,  state-type)): time = 
let  (val = undefined) 
ti-val = def-state-map(ti).num-unav-ress - def-state-map(ti).acploss? 

& td-val "- i-ti-val 
& ti > i-ti 
&  (defined?(val) => ti < val) 

—> val <-  (val; ti); 
val 

function update-status-start(tl: time,  a-name:  symbol, 
state-e-before:  state-type, 1-effects:  set(symbol)) 
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: state-type 
= let (new-acp-status: integer 

= (if 'acploss in 1-effects 

then 0 
else state-e-before.acploss?), 

new-num-used-res: integer 

= state-e-before.num-unav-ress 
+ size(intersect(l-effects, state-e-before.list-av-ress)), 

new-unav-res-map: map(symbol,set(symbol)) 

={|x-> 
update-res-map(x, state-e-before.unav-res-map, a-name, 1-effects) 

|   (x) x in union(domain(state-e-before.unav-res-map), 

1-effects)I}, 
new-av-list: set(symbol) 

= setdiff(state-e-before.list-av-ress, 1-effects)) 

< new-acp-status, 

new-num-used-res, 

new-unav-res-map, 

new-av-list > 

function update-status-finish 
(tl: time, a-name: symbol, state-e-before: state-type, 

1-effects: set(symbol)) 

: state-type 
= let (new-acp-status: integer 

= if 'acploss "in 1-effects 
then state-e-before.acploss? 

else (let (acts = state-e-before.unav-res-map('acploss)) 

if defined?(acts) 
& acts-less-act-named(acts, a-name) ~= {} 

then 0 

else 1), 
new-num-used-res: integer 

= size({ x I (x: symbol, acts) 
acts = state-e-before.unav-res-map(x) 

& defined?(acts) 

& x "= 'acploss 
& acts-less-act-named(acts, a-name) ~= {}}) , 

new-unav-res-map: map(symbol,set(symbol)) 

= {I x -> new-acts 
| (x, acts, new-acts) acts = state-e-before.unav-res-map(x) 

& defined?(acts) 
& new-acts = acts-less-act-named(acts, a-name) 
& new-acts ~= {}   I» 

let  (new-av-list:  set(symbol) 
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= setdiff(*initial-state-map*(0).list-av-ress, 
domain(new-unav-res-map))) 

< new-acp-status, 

new-num-used-res, 

new-unav-res-map, 

new-av-list > 

function update-res-map 

(res: symbol, res-map: map(symbol, set(symbol)), a-name: symbol, 
1-effects: set(symbol)) 

: set(symbol) 

= if res in 1-effects 

then if defined?(res-map(res)) 
then res-map(res) with a-name 
else {a-name} 

else if defined?(res-map(res)) 
then res-map(res) 

else {} 

function act-named-in?(nm: symbol, acts: set(activity)): boolean = 
ex(actl: activity)(actl in acts & actl.act-name = nm) 

function acts-less-act-named(acts: set(symbol), nm: symbol): set(symbol) 
filter(lambda(actl: symbol) actl ~= nm, 

acts) 

xxxxxxxxxxxxxxxxxxxxxx Def-state-of-piant xxxxxxxxxxxxxxxxxxxxxxx 

function Construct-state-map-def(schedule: sched) 
: st-hist-map 

= construct-state-map-def-aux(schedule, *initial-state-map*) 

function Construct-state-map-def-aux 

(schedule: sched, init-st-hist: st-hist-map) 
: st-hist-map 

= if empty(schedule) 
then init-st-hist 

else if empty(first(schedule).effect-set) 

then construct-state-map-def-aux(rest(schedule), init-st-hist) 

else construct-state-map-def-aux(rest(schedule), init-st-hist 
+* add-act-map(first(schedule), 
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first(schedule).effect-set, 

first(schedule).1st, 

first(schedule).est 
+ first(schedule).duration , 

init-st-hist)) 

%i%%m%%mm%mm%%m pos-state-of-piant %mm%%%m%%%mmm 

function Construct-state-map-pos(schedule:  sched) 
: st-hist-map 
= construct-state-map-pos-aux(schedule, *initial-state-map*) 

function Construct-state-map-pos-aux 
(schedule: sched, init-st-hist: st-hist-map) 

: st-hist-map 
= if empty(schedule) 

then init-st-hist 
else if empty(first(schedule).effect-set) 

then construct-state-map-pos-aux(rest(schedule), init-st-hist) 
else construct-state-map-pos-aux(rest(schedule), init-st-hist 

+* add-act-map(first(schedule), 

first(schedule).effect-set, 

first(schedule).est, 
first(schedule).1st 
+ first(schedule).duration, init-st-hist)) 

function longest-highest-poss-excess-interval 

(poss-state-map: map(time, state-type)) 

: tuple(time, time) = 
let (var best-dom-val = undefined, 

var best-ran-val = undefined, 
var best-after-dom-val = undefined) 

ti-val = poss-state-map(ti).num-unav-ress - poss-state-map(ti).acploss? 

& ti-val > 1 
& (defined?(best-dom-val) 

=> ti-val > best-ran-val 
or (ti-val = best-ran-val 

& time-after-in-domain( ti, ti-val, poss-state-map) - ti 

> best-after-dom-val - best-dom-val)) 
—> (best-dom-val <- (best-dom-val; ti); 

best-ran-val <- (best-ran-val; ti-val); 

best-after-dom-val 
<- time-after-in-domain 

( best-dom-val, best-ran-val, poss-state-map)); 
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if defined?(best-dom-val) & defined?(best-after-dom-val) 
then <best-dom-val, best-after-dom-val - 1> 

else undefined 

function maximally-poss-act-in-poss-interval 

(sched: seq(activity), i-ti: time, e-ti: time, 

unav-res: map(symbol, set(symbol))) 

: integer = 

let (var max-poss-act = undefined, 

var max-poss-time = undefined, 

var max-poss-indx = undefined, 

sel-resource = get-least-committed-res(unav-res)) 

(enumerate act over unav-res(sel-resource) do 

let ( ti: integer = get-activity-index(sched, act)) 

let (act-poss-time = poss-time-in-interval(sched(ti), i-ti, e-ti)) 
if (defined?(max-poss-time) => act-poss-time > max-poss-time) 
then max-poss-act <- act; 

max-poss-indx <- ti; 

max-poss-time <- act-poss-time); 

% format (true, ""'/, selected resource :"S~*/,selected activity :~S", 
'/, sel-resource, max-poss-act); 
max-poss-indx 

function get-least-committed-res(unav-res : map(symbol, set(symbol))) 
: symbol 

= first(sort([ x I (x) x in domain(unav-res)], 
lambda(al: symbol, a2: symbol) 

(size(unav-res(al)) < size(unav-res(a2))))) 

function poss-time-in-interval 

(act: activity, i-ti: time, e-ti: time): time = 

let (est = act,est, 

1st = act.1st, 

dur = act.duration) 
let (eft = est + dur, 

lft = 1st + dur) 
if est = 1st then 0 

else max(min(lft, e-ti + 1) - max(eft, i-ti), 
min(lst, e-ti) + 1 - max(est, i-ti)) 
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function poss-interval-split-time 
(act: activity, i-ti: time, e-ti: time): time = 

let (est = act.est, 
1st = act.1st, 
dur = act.duration) 

let (eft = est + dur, 
lft = 1st + dur) 

let (max-est = max(est, i-ti), 
min-lst = min(lst, e-ti), 
max-eft = max(eft - 1, i-ti), 

min-lft = min(lft - 1, e-ti)) 

if est = 1st then undefined 

else 
if min-lst - max-est >= min-lft - max-eft 

then (max-est + min-lst) div 2 
- (if max-est = min-lst & est < max-est 

then 1 else 0) 
else (max-eft + min-lft) div 2 - dur 

+ (if max-eft = min-lft & eft <= max-eft 

then 0 else 1) 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxx Aii-activities-scheduiedxxxxxxxxxxxxxxxxxxxxxx 
function All-activities-scheduled 

(activities: seq(activity), 

schedule : seq(activity)) 

: boolean 
= included-activities(activities) = included-activities(schedule) 

function Included-activities(activities : seq(activity)) 

: set(symbol) 
= seq-to-set(image(lambda (act : activity) 

act.act-name, 
activities)) 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXSort Input xxxxxxxxxxxxxxxxxxxxxxxxxxx 
function sort-activities (activities : seq(activity)) : seq(activity) 

= image(lambda(x : tuple(activity, seq(activity))) x.l, 

sort(image(lambda(y) <y, activities>, activities), 

sort-criteria)) 

function get-level(act : activity, acts : seq(activity)) : integer 

computed-using 
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empty(act.predecessors) => get-level(act, acts) = 0, 

true => get-level(act,acts) = 1 + reduce(lambda(x,y) if y < x then x else y, 

image(lambda(y) get-level(y, acts), 

image(lambda(x) get-activity(acts, x), 

act.predecessors))) 

function sort-criteria (actl : tuple(activity, seq(activity)), 

act2 : tuple(activity, seq(activity))) : boolean 
= let (keyl-1 : integer = get-level(actl.l, act1.2), 

keyl-2 : integer = get-level(act2.1, act2.2), 

key2-l : integer = actl.1.1st - actl.l.est - actl.1.duration, 

key2-2 : integer = act2.1.1st - act2.1.est - act2.1.duration) 

if (keyl-1 < keyl-2) then true 

else (keyl-1 = keyl-2) & (key2-l < key2-2) 

nnnnnnuvmnnnnvk Misc mmmr/.mrar/.r/.r/, 

function get-activity 

(activities : seq(activity), act-s : pred-succ-act) 

: activity 
= first(filter(lambda(x: activity) x.act-name = act-s.id, activities)) 

function get-activity-index 

(activities : seq(activity), name : symbol) 
: integer 
= some (indxO  :   integer) 

(indxO in domain(activities) & name = activities(indxO).1) 

UV/XUU Printing functions IVkVkWX 

function print-problem-gannt(prob-acts:  seq(activity)) = 
(enumerate act:  activity over prob-acts do 

print-gannt-line(act.act-name, act.est,  act.1st, act.duration)); 
format (true,  " ~9®a~ 10Qa" 10@a~ 10Sa~ 109a~ lOOa"'/.", 
0,   10,  20,  30,  40,  50); 
values() 

function print-ascii-gannt(sched:  seq(activity)) = 
let  (width = reduce(max, 

image(lambda (act:  activity) act.1st + act.duration, 
sched))) 
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let (scale-factor = if width < 100 then 1 else width div 100 + 1) 

(enumerate act: activity over sched do 

print-gannt-line 

(act.act-name, 

act.est div scale-factor, 

act.1st div scale-factor, 

max(l, (act.duration - 1) div scale-factor + 1))); 

format(true, "~9Qa", 0); 
(enumerate sn over [1 .. width div scale-factor div 10] do 

format(true, "~10@a", sn * 10 * scale-factor)); 

format(true, ""%"); 
values() 

function print-gannt-line(nm: symbol, est: time, 1st: time, dur: time) 

let (est = est + 1, '/, because zero-based 

1st = 1st + 1) 

let (eft = est + dur - 1, 
lft = 1st + dur - 1) 

if est = lft 
then format (true, "~8a~v@a~y.", 

nm, est, "*") 

elseif 1st = est 
then format (true, "~8a~v@a~v,,, ,*@a~y.", 

nm, est, "<*', lft - 1st, ">") 

elseif 1st < eft 
then format (true, "~8a~v<aa~v,,, '-Qa"v,,, '*Sa~v,,, '-Qa"'/.", 

nm, est, "(", 1st - est, ")", eft - 1st, "[", lft - eft, "]") 

elseif 1st = eft 
then format (true, " ~8a~vQa~v,,,' -Qa~v,,,' -Qa"*/,", 

nm, est, "(", 1st - est, "X", lft - eft, "]") 
else format (true, ""8a~vQa"v,,, '-Qa"v,,, '-@a~v,,, '-©a"*/." , 

nm, est, "(", eft - est, "[", 1st - eft, ")", lft - 1st, "3") 

function print-ascii-hist 
(hist: map(time, state-type), sched: seq(activity), scale?: boolean) 

let (height = reduce(max, image(lambda (st: state-type) 

st.num-unav-ress - st.acploss?, 

range(hist))), 
width = reduce(max, 
image(lambda (act: activity) act.1st + act.duration, 

sched))) 
let (scale-factor = if width < 100 then 1 else width div 100 + 1) 

(enumerate j over [0 .. height] do 
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let (i = height - j, 

var this-h = 0, 

var ign-ctr = 0) 

format(true, "~7Qa ", i); 

(enumerate k over [0 .. width] do 

let (st: state-type = hist(k)) 

this-h <- (if defined?(st) 

then st.num-unav-ress - st.acploss? 

else this-h); 

ign-ctr <- ign-ctr +1; 

if ign-ctr = scale-factor 

then princ(if this-h = i then "-" else " "); 

ign-ctr <- 0); 

format (true, "*"/,")); 

(if scale? then 

format(true, "~9@a", 0); 

(enumerate sn over [1 .. width div scale-factor div 10] do 

format(true, "~10Qa", sn * 10 * scale-factor)); 

format(true, ""%")); 
values() 

function print-ascii-gannt-and-poss-hist(sched: seq(activity)) = 

print-ascii-gannt(sched); 
print-ascii-hist(construct-state-map-pos(sched), sched, false) 

mmmmmmmmmr/. GS operators & functions iv/xiniinvixvixni 
mmmy.mr/.r/.     Refinement Order     mmmvx/.w/:/:a 

y, p-sched refines to qsched ; p-state-hist refines to q-state-hist 
'/ p-state-evs refines to q-state-evs 

'I,  drs 20ct95: reversed the order of 1st inequality 

function REFINES-T0 
(p-sched : sched,   q-sched : sched) : boolean 

= ( size(p-sched) <= size(q-sched) 
& fa(i : integer) 

( i in [1 .. size(p-sched)] 

=> (p-sched(i).est <= q-sched(i).est & 

q-sched(i).1st <= p-sched(i).1st 

))) 

function SEQ-SATISFIES 
(p-sched : seq(activity), sched : seq(activity)) :boolean 

= refines-to(p-sched, sched) 
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%%%%U%%%%%%%%%%%%%n%%mX%%%%%%  Inferred Safety Constraints %U%%%U%%%%%% 

function Consistent-ac-power-filter( p-schedule: sched, 

def-state-map: st-hist-map) 

: boolean 
= fa (tl:integer, act: integer) 

(tl in domain(def-state-map) & act in domain(p-schedule) & 

"empty(p-schedule(act).effect-set) 

& "empty(intersect(p-schedule(act).effect-set, 

def-state-map(tl).list-av-ress)) 

=> def-state-map(tl).num-unav-ress <= 
(1 + def-state-map(tl).acploss?)) 

function Consistent-ac-power-propl( p-schedule: sched, 
def-state-map: st-hist-map) 

: boolean 
= fa (tl:integer, t2:integer, act: integer) 

(tl in domain(def-state-map) & act in domain(p-schedule) 

& "empty(p-schedule(act).effect-set) 
& t2 = find-time-after(tl, def-state-map(tl), def-state-map) 

& defined?(t2) & 
def-state-map(tl).num-unav-ress = (1 + def-state-map(t1),acploss?)& 

"empty(intersect(p-schedule(act).effect-set, 
def-state-map(tl).list-av-ress)) 

& (p-schedule(act).est > (tl - p-schedule(act).duration)) 

=> 

t2 <= p-schedule(act).est ) 

function Consistent-ac-power-prop2( p-schedule: sched, 
def-state-map: st-hist-map) 

: boolean 
= fa (tl:integer, t2:integer, act: integer) 

(tl in domain(def-state-map) & act in domain(p-schedule) 

& "empty(p-schedule(act).effect-set)& 
t2 = find-time-after(tl, def-state-map(tl), def-state-map) 

& defined?(t2) & 
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def-state-map(tl).num-unav-ress = (1 + def-state-map(tl).acploss?)& 
"empty(intersect(p-schedule(act).effect-set, 

def-state-map(tl).list-av-ress)) 
& t2 > p-schedule(act).1st 

=> (p-schedule(act).1st 
<= tl - p-schedule(act).duration)) 

function find-time-after(tl: time, tl-val: state-type, 
def-state-hist-map: st-hist-map) 

: time 
= let (val = undefined) 

ti-val = def-state-hist-map(ti) 
& ti > tl 
& (defined?(val) => ti < val) 
—> val <- (val; ti); 

val 

'/,-- Extract 

function new-activity 
(act-i : activity) : activity 
= act-i.ft <- act-i.est + act-i.duration; 

act-i.st <- act-i.est; 
act-i 

function Extract-schedule 
(ps : seq(activity)) : sched 
= [ new-activity(ps(i)) 

I (i:integer) 
i in domain(ps)] 

function excess-poss? 
(int : tuple(time, time)) : boolean 
= defined?(int) 

'/. —- 

mmmnnm 
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THEORY-LAWS 

yo . Finite Difference 

y.y.y.'/, DEFINITE 

assert DISTRIBUTE-const-def-STATE-map-DVER-EMPTY 

fa () 
(construct-state-map-def([]) = *initial-state-map*) 

assert DISTRIBUTE-const-def-STATE-map-OVER-APPEND 
fa (ps: sched, qs:sched, act: activity) 

( construct-state-map-def(append(ps, act)) 
= construct-state-map-def(ps) +* 

fd-def-app(act, ps, act.effect-set, 
act.1st, act.est + act.duration, 
construct-state-map-def(ps))) 

assert DISTRIBUTE-CONST-def-STATE-map-OVER-EXTEND-EST 
fa (ps: sched, qs:sched, i:integer, n-est: time) 

( construct-state-map-def(seq-shadowl(ps, i, 
tuple-shadow(ps(i).est, 

n-est)) ) 
= construct-state-map-def(ps) 

+* fd-def-ext-est(i, ps, ps(i).effect-set, 
ps(i).est + ps(i).duration, 
n-est + ps(i).duration, 
construct-state-map-def(ps))) 

assert DISTRIBUTE-CONST-def-STATE-map-OVER-EXTEND-lst 
fa (ps: sched, qs:sched, i:integer, n-lst: time) 

(construct-state-map-def(seq-shadowl(ps, i, 
tuple-shadow(ps(i).1st, 

n-lst))) 
= construct-state-map-def(ps) +* 

fd-def-ext-lst(i, ps, ps(i).effect-set, 
n-lst, ps(i).lst, construct-state-map-def(ps))) 

VI.VI.  POSSIBLE 
assert DISTRIBUTE-CONST-pos-STATE-map-OVER-EXTEND-EST 
fa (ps: sched, qs:sched, i:integer, n-est) 

(construct-state-map-pos 
(seq-shadowl(ps, i, tuple-shadow(ps(i).est,n-est)) ) 
= construct-state-map-pos(ps) 
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+* fd-pos-ext-est(i, ps, 

ps(i).effect-set, 
ps(i).est , 

n-est, 

construct-state-map-pos(ps))) 

assert DISTRIBUTE-CONST-pos-STATE-map-OVER-EXTEND-LST 
fa (ps: sched, qs:sched, i:integer, n-lst) 

(construct-state-map-pos 

(seq-shadowl(ps, i, tuple-shadow(ps(i).1st, n-lst)) ) 

= construct-state-map-pos(ps) 

+* fd-pos-ext-lst(i, ps, ps(i).effect-set, 

n-lst + ps(i).duration , 

ps(i).lst + ps(i).duration, 

construct-state-map-pos(ps))) 

itvavixn 
assert DISTRIBUTE-ALL-ACTIVITIES-SCHEDULED 
fa (Acts: seq(activity), Sched: seq(activity)) 

(ALL-ACTIVITIES-SCHEDULED(Act s, Sched) 

= (Included-activities(Acts) = Included-activities(Sched))) 

assert DISTRIBUTE-ALL-ACTIVITIES-SCHEDULED-OVER-EMPTY-SEQ 
fa (A: seq(activity)) 

(all-activities-scheduled( A ,[]) = false) 

assert DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-EMPTY-SEQ 
fa () 

(Included-activities([]) = {}) 

assert DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-CONCATENATE 
fa (SI: seq(activity), S2: seq(activity)) 

(Included-activities(SI union S2) = Included-activities(SI) union 

Included-activities(S2)) 

assert DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-APPEND 
fa (S: seq(activity), A: activity) 

(Included-activities(append(S,A)) = Included-activities(S) union 

Included-activities([A])) 
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assert 
CONSISTENT-ACTIVITY-SEPARATION-EST-to-CONSISTENT-ACTIVITY-SEPARATIQN-EST 

fa(PS)( fa(S)(REFINES-TO(S, PS) => CONSISTENT-ACTIVITY-SEPARATION-EST(S)) 

=> CONSISTENT-ACTIVITY-SEPARATION-EST(PS)) 

assert 
CONSISTENT-ACTIVITY-SEPARATION-LST-to-CONSISTENT-ACTIVITY-SEPARATION-LST 

fa(PS)( fa(S)(REFINES-TO(S, PS) => CONSISTENT-ACTIVITY-SEPARATION-LST(S)) 

=> CONSISTENT-ACTIVITY-SEPARATION-LST(PS)) 

assert get-activity-over-append-predecessors 

fa(q,e,j) get-activity(append(q, e), e.predecessors(j)) 

= get-activity(q, e.predecessors(j)) 

c/o/c/o/o/vo/wo/o/o/i/vvVVVVVVVVVVVVVVVVVV'i 

•/.  
THEORY-RULES 

function RULE-DISTRIBUTE-const-def-STATE-map-OVER-EMPTY 

() rb-compile-simplification-equality 
DISTRIBUTE-const-def-STATE-map-OVER-EMPTY 

function RULE-DISTRIBUTE-const-def-state-map-OVER-append 

() rb-compile-simplification-equality 
DISTRIBUTE-const-def-STATE-map-OVER-append 

function RULE-DISTRIBUTE-const-def-STATE-map-OVER-Extend-est 

() rb-compile-simplification-equality 
DISTRIBUTE-const-def-STATE-map-OVER-Extend-est 

function RULE-DISTRIBUTE-const-def-STATE-map-OVER-Extend-lst 

() rb-compile-simplification-equality 
DISTRIBUTE-const-def-STATE-map-OVER-Extend-lst 
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'/possible 

function RULE-DISTRIBUTE-DISTRIBUTE-CONST-pos-STATE-map-OVER-EXTEND-EST 

() rb-compile-simplification-equality 
DISTRIBUTE-const-pos-state-map-OVER-extend-est 

function RULE-DISTRIBUTE-DISTRIBUTE-CONST-pos-STATE-map-OVER-EXTEND-lST 

() rb-compile-simplification-equality 

DISTRIBUTE-const-pos-state-map-OVER-extend-lst 

0/ 0/ 0/ 0/ «/ 0/ 0/ «/ 0/ 0/ «/ 0/ 0/ 0/ 0/ 0/ •/ •/ «/ «/ «/ 
/o /o /o /o /o /> /• It It h It It It It It It It It It It It 

function 
RULE-DISTRIBUTE-ALL-ACTIVITIES-SCHEDULED-OVER-EMPTY-SEQ-REWRITE 

() rb-compile-simplification-equality 
DISTRIBUTE-ALL-ACTIVITIES-SCHEDULED-OVER-EMPTY-SEq 

function 
RULE-DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-EMPTY-SEQ-REWRITE 

() rb-compile-simplification-equality 
DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-EMPTY-SEq 

function 
RULE-DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-CONCATENATE-REWRITE 

() rb-compile-simplification-equality 

DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-CONCATENATE 

function 
RULE-DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-APPEND-REWRITE 

() rb-compile-simplification-equality 
DISTRIBUTE-INCLUDED-ACTIVITIES-OVER-APPEND 

function rule-get-activity-over-append-predecessors () 
rb-compile-simplification-equality get-activity-over-append-predecessors 

I  
THEORY-MISC-LAWS 

I  
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THEORY-MISC-DEFS 

'a'/. %  ARE THESE RULES CORRECT 

function 
OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-EST-TO-CONSISTENT-ACTIVITY 

-SEPARATION-EST (a) 

computed-using 
a = ffa(S0)(refines-to(®PS0,S0) => CONSISTENT-ACTIVITY-SEPARATION-EST(SO))' 

& new-a = make-structure( 

'##r RB-GRAMMAR 
(rule-instance-make UNDEFINED, 
CONSISTENT-ACTIVITY-SEPARATION-EST(@(c-t(PSO))), 

$o, $o, 
+      1, OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-EST-TO- 

CONSISTENT-ACTIVITY-SEPARATION-EST)') 
=> OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-EST-TO-CONSISTENT- 

ACTIVITY-SEPARATION-EST(a) 

= new-a 

function 
OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-LST-TO-CONSISTENT-ACTIVITY- 

SEPARATION-LST (a) 
computed-using 
a = 'fa(SO)(refines-to(<9PSO,SO) => CONSISTENT-ACTIVITY-SEPARATION-LST(SO))' 

& new-a = make-structure( 

'##r RB-GRAMMAR 
(rule-instance-make UNDEFINED, 
CONSISTENT-ACTIVITY-SEPARATION-LST(@(c-t(PSO))), 

${}, $o, 
1, OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-LST-TO-CONSISTENT 

-ACTIVITY-SEPARATION-LST)') 
=> OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-LST-TO-CONSISTENT-ACTIVITY 

-SEPARATION-LST(a) 

= new-a 

function 
OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-propl (a) 

computed-using 
a = 'fa(SO)(refines-to(QPSO,SO) => Consistent-ac-power(SO))' 

& new-a = make-structure( 

'##r RB-GRAMMAR 
(rule-instance-make UNDEFINED, 
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Consistent-ac-power-propl(@ (c-t(PSO)), 
construct-state-map-def(<3 (c-t (PSO)))), 

$o, $o, 
1, OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-propl)') 

=> OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-propl(a) 
= new-a 

function 

OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-f ilter (a) 

computed-using 

a = 'fa(S0)(refines-to(@PS0,S0) => Consistent-ac-power(SO)); 

& new-a = make-structure( 

'##r RB-GRAMMAR 

(rule-instance-make UNDEFINED, 

Consistent-ac-power-filter(@(c-t(PSO)), 

construct-state-map-def(0(c-t(PSO)))), 

$o, $o, 
1, OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-filter)') 

=> OUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-filter(a) 
= new-a 

function 
DUTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-prop2 (a) 

computed-using 
a = 'fa(S0)(refines-to(SPS0,S0) => Consistent-ac-power(SO))' 

& new-a = make-structure( 

'##r RB-GRAMMAR 

(rule-instance-make UNDEFINED, 

Consistent-ac-power-prop2(0(c-t(PSO)), 
construct-state-map-def(@(c-t(PSO)))), 

$o, $o, 
1, 0UTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-prop2)') 

=> 0UTAGE-RULE-Consistent-ac-power-to-Consistent-ac-power-prop2(a) 
= new-a 

I  
THEORY-MISC-RULES 

rule tuple-deref-seq-appl-over-get-activity-index-seq-shadowl-tuple-shadow(a) 
also {|   index-on -> <'rb-simplification-rules,   'get-field>  1} 

a =  'QqO(get-activity-index 
(seq-shadowl(@ql, Qipl, tuple-shadow(Qq2(Qip2).Ofi, 00)), 
Sk)) 

.Qfo' 
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& term-equal?(qO, ql) & term-equal?(ql, q2) & term-equal?(ipl, ip2) 

& fi ~= fo 
__> a = 'QqO(get-activity-index(Oql, Ok)).Qfo' 

rule tuple-deref-over-get-activity-seq-shadowl-tuple-shadow(a) 

also {I index-on -> <'rb-simplification-rules, 'get-field> 1} 

a = 'get-activity 
(seq-shadowl(Oql, Oipl, tuple-shadow(0q2(0ip2) .Of i, 00)), 

.Qfo' 
& term-equal?(ql, q2) & term-equal?(ipl, ip2) 

& fi ~= fo 
__> a = 'get-activity(Qql, Ok).Qfo' 

rule defined?-over-get-activity-seq-shadowl-tuple-shadow(a) 

also {| index-on -> <'rb-simplification-rules, 'defined?> 1} 

a = 'defined?(get-activity 
(seq-shadowl(0ql, «ipl, tuple-shadow(Qq2(0ip2).00, 00)), 

0k) )' 
& term-equal?(ql, q2) a term-equal?(ipl,  ip2) 

—>    a =  'defined?(get-activity(Qql, Ok))' 

'/,'/. Not certain that this is valid 
rule get-activity-over-append-predecessors(a) 

also {|   index-on -> <'rb-simplification-rules,   'get-activity>  1} 
a =  'get-activity(append(Qq, Qel), Qe2.predecessors(0j))' 

a term-equal?(el,  e2) 
~>    a =  'get-activity(0q, Qe2.predecessors(0j))' 

y,  
THE0RY-MISC-F0RMS 

form remove-SOME-OP-SIMPLIFICATION-RULES 
remove-rb-simplification-rulesCsome, 

■C'basic-boolean-theory-distribute-some-over-ordered-or-into-ex-form}) 

form add-SOME-OP-SIMPLIFICATION-RULES 
add-rb-simplification-rules('some, 

{'basic-boolean-theory-rule-distribute-var-definitions-in-some-op}) 

•/.'/,  'basic-boolean-theory-rule-distribute-var-definitions-in-some-op 

form remove-member-SIMPLIFICATION-RULES 
remove-rb-simplification-rules('member, 
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{'seq-theory-rule-distribute-in-over-interval}) 

form remove-defined?-SIMPLIFICATION-RULES 
remove-rb-simplification-rules 

('defined?, {'regroup-type-rule-definedness-of-function-parameter}) 

form remove-seq-theory-rule-distribute-in-over-reverse 
remove-rb-simplification-rules('member, 

{'seq-theory-rule-distribute-in-over-reverse}) 

form ADD-universal-FI-laws 
ADD-RB-FORWARD-IMPLICATIONS 

('forall, 

{ 'OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-EST-TO-CONSISTENT-ACTIVITY 
-SEPARATION-EST 

, 'OUTAGE-RULE-CONSISTENT-ACTIVITY-SEPARATION-LST-TO-CONSISTENT-ACTIVITY 
-SEPARATION-LST 

, ' OUTAGE-RULE-CONSISTENT-AC-POWER-TO-CONSISTENT-AC-POWER-filter 

, '0UTAGE-RULE-C0NSISTENT-AC-PDWER-T0-C0NSISTENT-AC-P0WER-PR0P1 

, '0UTAGE-RULE-C0NSISTENT-AC-P0WER-T0-C0MSISTENT-AC-P0WER-PR0P2 

}) 

form ADD-AND-SIMPLIFICATION-RULES 

'/,'/.  associative commutative idempotent identity fixpoint 
add-simplification-rules-for-operator(;and) '/, ; 
% add-rb-simplification-rules('and, 

'/• {'basic-boolean-theory-rule-distribute-and-over-or}) 
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Appendix D - Global Search Theories for the 
Outage Problem 

Appendix D contains the global search theory for scheduling considering the definite 
period of activities. 

form index-outage-scheduling 
gs-activities = make-binding('gs-activities) 
ft full-sched = make-binding('full-sched) 
ft p-sched = make-bindingCp-sched) 
ft unsched-acts = make-binding('unsched-acts) 
ft def-state-map = make-binding('def-state-map) 
ft p-sched-new = make-binding('p-sched-new) 
ft def-state-map-new = make-binding('def-state-map-new) 
ft unsched-acts-new = make-binding('unsched-acts-new) 
ft gs-act = make-binding('gs-act) 

—> 

'##r cypress-grammar 
(Global-Search-Theory GS-OUTAGE-SCHEDULING 

input-types seq(activity) 
input-vars gs-activities 

input-condition true 

output-types seq(activity) 

output-vars full-sched 
output-condition 

all-activities-scheduled(gs-activities, full-sched) 

subspace-types 
seq(activity), 
seq(activity), 
st-hist-map 

subspace-vars 

p-sched, 
unsched-acts, 
def-state-map 

subspace-split-vars 
p-sched-new, 
unsched-acts-new, 
def-state-map-new 
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subspace-vars-constraint 
def-state-map = construct-state-map-def(p-sched) 

& included-activities(gs-activities) = included-activities(p-sched) 
union included-activities(unsched-acts) 

& disjoint(included-activities(p-sched), included-activities(unsched-acts)) 

& defined?(p-sched) 

Constraint-Info-types 

activity 
Constraint-Info-vars 

gs-act 
Constraint-Info-condition 

gs-act = first(unsched-acts) 

Splitting-constraint 

p-sched-new = append(p-sched, gs-act) 

& unsched-acts-new = rest(unsched-acts) 
& def-state-map-new = construct-state-map-def(p-sched-new) 

satisfies 
refines-to(p-sched,full-sched) 

refines 
refines-to(p-sched, p-sched-new) 

initial-space 
(< D, sort-activities(gs-activities), 

*initial-state-map*>) 

extract 
full-sched = p-sched 

Extractable 

unsched-acts = [] 

Splittable 
unsched-acts ~= [] 

)' in gs-theories-prop(find-global('powersequence)) 

form index-outage-poss-scheduling 

gs-ps = make-binding Cgs-ps) 
& full-sched = make-binding('full-sched) 

& p-sched = make-binding('p-sched) 
& def-state-map = make-biriding('def-state-map) 

& poss™state-map = make-binding(Jposs-state-map) 
& p-sched-new = make-binding('p-sched-new) 
& def-state-map-new = make-binding('def-state-map-new) 

& poss-state-map-new = make-binding('poss-state-map-new) 
& gs-high-poss-interval = make-bindingCgs-high-poss-interval) 

& gs-res-index = make-binding('gs-res-index) 
& gs-split-time = make-binding('gs-split-time) 

& gs-switch = make-binding('gs-switch) 
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—> 

Global search theory for time window refinement that takes into consideration the 
potential period of activities. 

'##r cypress-grammar 
(Global-Search-Theory GS-OUTAGE-poss-SCHEDULING-1 

input-types seq(activity) 
input-vars gs-ps 
input-condition true 

output-types seq(activity) 
output-vars    full-sched 
output-condition 

all-activities-scheduled(gs-ps, full-sched) 

subspace-types 
seq(activity), 
st-hist-map, 
st-hist-map 

subspace-vars 
p-sched, 
def-state-map, 
poss-state-map 

subspace-split-vars 
p-sched-new, 
def-state-map-new, 
poss-state-map-new 

subspace-vars-constraint 
def-state-map = construct-state-map-def(p-sched) 
& poss-state-map = construct-state-map-pos(p-sched) 

Constraint-Info-types 
tuple(time9 time),  integer, time,  integer 

Constraint-Info-vars 
gs-high-poss-interval, 
*/, gs-res,        computed 
gs-res-index, gs-split-time, 
gs-switch 

Constraint-Info-condition 
gs-higb-poss-interval 

= longest-highest-poss-excess-interval(poss-state-map) 
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& gs-res-index 

= maximally-poss-act-in-poss-interval 

(p-sched, gs-high-poss-interval.1,gs-high-poss-interval.2, 

poss-state-map(gs-high-poss-interval.1).unav-res-map) 

& gs-split-time 
= poss-interval-split-time(p-sched(gs-res-index), 

gs-high-poss-interval. 1, 

gs-high-poss-interval.2) 

k  defined?(gs-split-time) 
& gs-switch in [0, 1] '/, 1 causes things to be scheduled early 

& (gs-switch = 0 

& gs-split-time ~= p-sched(gs-res-index).1st 

or 

gs-switch = 1 

& 1 + gs-split-time ~= p-sched(gs-res-index).est) 

Splitting-constraint 

if gs-switch = 0 

then p-sched-new 
= seq-shadowl(p-sched, 

gs-res-index, 
tuple-shadow(p-sched(gs-res-index).1st, 

gs-split-time)) 
& def-state-map-new = construct-state-map-def(p-sched-new) 
& poss-state-map-new = construct-state-map-pos(p-sched-new) 

else 

p-sched-new 

= seq-shadowl(p-sched, 

gs-res-index, 

tuple-shadow(p-sched(gs-res-index).est, 

1 + gs-split-time)) 
& def-state-map-new = construct-state-map-def(p-sched-new) 

& poss-state-map-new = construct-state-map-pos(p-sched-new) 

satisfies 
refines-to(p-sched,full-sched) 

refines 
refines-to(p-sched, p-sched-new) 

initial-space 
(<gs-ps, construct-state-map-def(gs-ps), 

construct-state-map-pos(gs-ps) >) 

extract 
full-sched = extract-schedule(p-sched) 

Extractable 

"excess-poss? 
(longest-highest-poss-excess-interval(poss-state-map)) 
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Splittable 

excess-poss? 
(longest-highest-poss-excess-interval(poss-state-map)) 

)' in gs-theories-prop(find-global('powersequence)) 

«U.S. GOVERNMENT PRINTING OFFICE:       1996-509-127-47063 
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MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


